Diferensial Fungsi Majemuk Diferensial Parsial Diferensial Total Chain

  • Slides: 20
Download presentation
Diferensial Fungsi Majemuk -Diferensial Parsial - Diferensial Total - Chain rule - dll

Diferensial Fungsi Majemuk -Diferensial Parsial - Diferensial Total - Chain rule - dll

Diferensial Parsial Diferensial Total

Diferensial Parsial Diferensial Total

High Order Partial Derivatives Fungsi dengan lebih dari satu variabel bebas juga dapat diturunkan

High Order Partial Derivatives Fungsi dengan lebih dari satu variabel bebas juga dapat diturunkan lebih dari satu kali Turunan parsial z = f (x, y) kalau kontinyu dapat mempunyai turunannya sendiri. empat turunan parsial : • Dapat dilambangkan fxx, fxy, fyx, dan fyy • fxy = fyx

Partial derivatives Cobb-Douglas Q = 96 K 0. 3 L 0. 7 production function

Partial derivatives Cobb-Douglas Q = 96 K 0. 3 L 0. 7 production function ( + =1)

�Market model Techniques of partial differentiation

�Market model Techniques of partial differentiation

 • Market model Geometric interpretation of partial derivatives

• Market model Geometric interpretation of partial derivatives

 • Market model

• Market model

Q Q S 0 S S 1 D P D P

Q Q S 0 S S 1 D P D P

S 1 Q Q S 0 D P Q 0 Q 1 D 0

S 1 Q Q S 0 D P Q 0 Q 1 D 0 P Market model

Y = C + I 0 + G 0 C = a + b(Y-T);

Y = C + I 0 + G 0 C = a + b(Y-T); T=d+t. Y; b = MPC t = MPT Y=( a-bd+I+G)/(1 -b+tb) C=(b(1 -t)(I+G)+a-bd)/ (1 -b+tb) T=(t(I+G)+ta+d(1 -b))/ (1 -b+tb) National-income model (a > 0; 0 < b < 1) (d > 0; 0 < t < 1)

Input-output model ∂x 1/∂d 1 = b 11

Input-output model ∂x 1/∂d 1 = b 11

�Use Jacobian determinants to test the existence of functional dependence between the functions /J/

�Use Jacobian determinants to test the existence of functional dependence between the functions /J/ �Not limited to linear functions as /A/ (special case of /J/ �If /J/ = 0 then the non-linear or linear functions are dependent and a solution does not exist. Note on Jacobian Determinants

Total Differentials

Total Differentials

Diferensial Total

Diferensial Total

 Let Utility function U = U (x 1, x 2, …, xn) Differentiation

Let Utility function U = U (x 1, x 2, …, xn) Differentiation of U wrt x 1. . n U/ xi is the marginal utility of the good xi dxi is the change in consumption of good xi

 • Given a function y = f (x 1, x 2, …, xn)

• Given a function y = f (x 1, x 2, …, xn) • Total differential dy is: • Total derivative of y with respect to x 2 found by dividing both sides by dx 2 (partial total derivative) Finding the total derivative from the differential

Chain rule (kaidah rantai) � This is a case of two or more differentiable

Chain rule (kaidah rantai) � This is a case of two or more differentiable functions, in which each has a distinct independent variable. where z = f(g(x)), i. e. , z = f(y), i. e. , z is a function of variable y and • y If=Rg(x), = f(Q)i. e. , and ify Q is =a g(L) function of variable x

z x Kaidah Rantai y t Pohon rantai

z x Kaidah Rantai y t Pohon rantai

Kaidah Rantai Kalau w = w(x, y, z) dan x = x(u, v), y

Kaidah Rantai Kalau w = w(x, y, z) dan x = x(u, v), y = y(u, v), dan z = z(u, v), maka pohon rantai : w x y u z v

 Kalau z = z(x, y), dan x = x(s), y = y(s), dan

Kalau z = z(x, y), dan x = x(s), y = y(s), dan s = s(u, v), maka pohon rantai menjadi z: y x s u v