DICOM WG02 Advances in XRay Angiography Projection Imaging

  • Slides: 46
Download presentation
DICOM WG-02 Advances in X-Ray Angiography Projection Imaging and 3 D SPIE Medical Imaging

DICOM WG-02 Advances in X-Ray Angiography Projection Imaging and 3 D SPIE Medical Imaging 2009, Orlando Authors: Tim Becker Heinz Blendinger Bas Revet Francisco Sureda Rainer Thieme European Society of Cardiology Siemens Healthcare Philips Healthcare GE Healthcare (Speaker) Siemens Medical Solutions (Chair DICOM WG-02) 1

Presentation Outline Introduction Present and future of X-Ray Angiography in DICOM 2 D Projection

Presentation Outline Introduction Present and future of X-Ray Angiography in DICOM 2 D Projection Images & Presentation Application Cases of the Enhanced XA SOP Class XA 2 D Grayscale Softcopy Presentation State 3 D Reconstruction from Projections & Presentation X-Ray 3 D SOP Class N-Dimensional Grayscale Softcopy Presentation State Conclusion 2

Overview of X-Ray Angiography in DICOM Approved in the Standard X-Ray Acquisition Supp 94:

Overview of X-Ray Angiography in DICOM Approved in the Standard X-Ray Acquisition Supp 94: Radiation Dose Reporting 2 D Projection Images Follow-up of PAS by IEC MT 38 – 62 B Follow-up of IHE REM Profile Supp 139 -PC: Supp 83: Enhanced XA/XRF 3 D Reconstruction Work in Progress Supp 116: X-Ray 3 D Storage Enhanced XA Informative Annex Supp 140 -PC: Presentation State Multi-Dimensional Presentation State 3

Workflow 2 D X-Ray Angiography SOP CLASS X-Ray Acquisition Procedure X-Ray 2 D Projection

Workflow 2 D X-Ray Angiography SOP CLASS X-Ray Acquisition Procedure X-Ray 2 D Projection SOP Class SOP CLASS 2 D Presentation State SOP Class Presentation Procedure Visualization X-Ray Acquisition System Visualization 2 D Visualization System 4

Enhanced XA: 2 D projection images Supplement 83 – Standard 2004 – New SOP

Enhanced XA: 2 D projection images Supplement 83 – Standard 2004 – New SOP Class for Multi-frame X-Ray Projection Angiography – Re-use of encoding mechanisms of Enhanced CT and MR – Enhanced with new attributes to support new applications What can be done with this new SOP Class? – Supplement 139 (Part 17 – Informative) – Public Comments passed • Describes use cases where the Enhanced XA provides better solutions • Provides encoding guidelines for implementors, both creators and users of the Enhanced XA SOP Class 5

Enhanced XA: Supplement 139 X-Ray 2 D Projection X-Ray Acquisition Modality Enhanced XA SOP

Enhanced XA: Supplement 139 X-Ray 2 D Projection X-Ray Acquisition Modality Enhanced XA SOP CLASS Applications – General Definitions: • Time relationships, Acquisition Geometry, Pixel Size calibration – Application Use Cases • Acquisition: Waveform synch, Mechanical Movement, X-Ray controls… • Image Registration: 3 D structures projected on 2 D images • Display: Standard pipeline, multi-mask subtraction, per-frame pixel shift • Review: Variable review settings per group of frames • Processing: Projection pixel calibration 6

Enhanced XA – Time Relationships Content Date (0008, 0023) Content Time (0008, 0033) Frame

Enhanced XA – Time Relationships Content Date (0008, 0023) Content Time (0008, 0033) Frame “i” Acquisition Datetime Frame “ 1” Acquisition Datetime (0018, 9074) Acquisition Datetime (0008, 002 A) Frame “ 1” Reference Datetime (0018, 9151) Frame “N” Reference Datetime Frame “i” Reference Datetime … … FRAME 1 Frame “N” Acquisition Datetime FRAME i Frame “ 1” Acquisition Duration (0018, 9220) time FRAME N Frame “N” Acquisition Duration (calculated) If Acquisition is synchronized with external time reference then Acquisition Time Synchronized (0018, 1800) = YES Exposure Time (0018, 9328) = SUMi( Frame “i” Acquisition Duration ) Average Pulse Width (0018, 1154) = SUMi(Frame “i” Acquisition Duration) / N 7

Enhanced XA – Time Relationships (one frame) Frame Reference Datetime (0018, 9151) Frame Acquisition

Enhanced XA – Time Relationships (one frame) Frame Reference Datetime (0018, 9151) Frame Acquisition Datetime (0018, 9074) X-ray FRAME “i” Frame Acquisition Number (0020, 9156) = “i” PRE-FRAME X-ray time Detector Activation Offset from Exposure (0018, 7016) Frame Acquisition Duration (0018, 9220) R Detector Active Time (0018, 7014) Cardiac Trigger Delay Time (0020, 9153) Last R-peak prior to the X-ray FRAME “i” Q S T NOTE: Positioner angle values, table position values etc… are measured at the Frame Reference Datetime 8

Enhanced XA – Acquisition Techniques Values per frame are in the Per-frame Functional Groups

Enhanced XA – Acquisition Techniques Values per frame are in the Per-frame Functional Groups Seq. (200, 9230): In the Frame Content Sequence (0020, 9111): – Frame Acquisition Duration (0018, 9220) in ms of frame « i » = Dti In the Frame Acquisition Sequence (0018, 9417): – KVP (0018, 0060) of frame « i – X-Ray Tube Current in m. A (0018, 9330) of frame « i » = k. Vpi = m. Ai 9

Enhanced XA – Acquisition Geometry System set up PATIENT position on the Table Image

Enhanced XA – Acquisition Geometry System set up PATIENT position on the Table Image Transformation X-Ray Acquisition TABLE movement Patient Position Description POSITIONER movement X-Ray Table Description Pixel Data Storage Detector Binning Detector Description X-Ray Positioner Description X-Ray Isocenter Reference System Macro X-Ray Geometry Macro FOV Rotation & Horiz Flip FOV Description X-Ray Field of View Macro XA/XRF Acquisition Module X-Ray Detector Module Image Pixel Module 10

Enhanced XA – 3 D/2 D Registration Acquisition #1 Acquisition #2 +Z O +X

Enhanced XA – 3 D/2 D Registration Acquisition #1 Acquisition #2 +Z O +X +Y Table Movement +Z O +X +Y +Z O Positioner Movement SID, ISO, FOV change +X +Y +Zp +Z O +X +Yp +Xp +Y P 1 (x, y, z) P 1 t (xt, yt, zt) P 2 (x, y, z) P 2 p (xp, yp, zp) P 2(i, j) fa(P 1, Table 1) fb(P 1 t, Table 2) fc(P 2, Positioner 2) fd(P 2, SID, ISO, FOV) 11

Enhanced XA – Standard Display Pipeline Shape = “IDENTITY” if (0028, 0004) = MONOCHROME

Enhanced XA – Standard Display Pipeline Shape = “IDENTITY” if (0028, 0004) = MONOCHROME 2 Shape = “INVERSE” if (0028, 0004) = MONOCHROME 1 X Modality LUT Stored Values VOI LUT Pixel Intensity Relationship LUT 1 to N Pixel Intensity Relationship LUT Sequence (0028, 9422) Pixel Intensity Relationship LUT Pixel values transformed for specific application (if TO_LINEAR, then pixel values proportional to the X-ray beam intensity) Display Application “TO_LINEAR” is required if Pixel Intensity Relationship (0028, 1040) = LOG Pixel values transformed for specific application Application Pixel Intensity Relationship LUT Sequence (0028, 9422) 12

Enhanced XA – Variable Review Settings FRAME ACQUISITION: 1 2 3 4 5 Acq.

Enhanced XA – Variable Review Settings FRAME ACQUISITION: 1 2 3 4 5 Acq. Frame rate: 4. 0 Purpose: X-Ray control 6 7 8 9 10 11 12 13 Acq. Frame rate: 15. 0 Purpose: Contrast Media 14 15 16 17 18 19 Acq. Frame rate: 8. 0 Purpose: Contrast Media Frame Display Sequence (0018, 7022) DICOM ENCODING: XA/XRF Multi-frame Presentation Module Item 1 >Start Trim (0008, 2142) >Stop Trim (0008, 2143) >Skip Frame Range Flag (0008, 9460) >Recom. Display Frame Rate (0008, 9459) = = 1 5 SKIP 4. 0 Item 2 >Start Trim (0008, 2142) >Stop Trim (0008, 2143) >Skip Frame Range Flag (0008, 9460) > Recom. Display Frame Rate (0008, 9459) = = 6 13 DISPLAY 15. 0 Item 3 >Start Trim (0008, 2142) >Stop Trim (0008, 2143) >Skip Frame Range Flag (0008, 9460) > Recom. Display Frame Rate (0008, 9459) = = 14 19 DISPLAY 8. 0 13

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames #1 #2

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames #1 #2 #3 Right Leg Left Leg Sub ID 101 Sub ID 100 DICOM ENCODING: Mask Module Mask Subtraction Sequence (0028, 6100) Item 1 >Mask Operation (0028, 6101) >Subtraction Item ID (0028, 9416) >Applicable Frame Range (0028, 6102) >Mask Frame Numbers (0028, 6110) >Mask Operation Expl. (0028, 6190) = AVG_SUB = 100 = 23 = 1 = Left leg Item 2 >Mask Operation (0028, 6101) >Subtraction Item ID (0028, 9416) >Applicable Frame Range (0028, 6102) >Mask Frame Numbers (0028, 6110) >Mask Operation Expl. (0028, 6190) = AVG_SUB = 101 = 23 = 1 = Right leg 14

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames DICOM ENCODING:

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames DICOM ENCODING: Frame Pixel Shift per frame Item 2 >Frame Pixel Shift Seq (0028, 9415) Frame #2 #1 #2 Item 3 >Frame Pixel Shift Seq (0028, 9415) Frame #3 #3 15

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames Left Leg

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames Left Leg #1 mask #2 Pixel Shift 0. 0 8. 0 DICOM ENCODING: Frame Pixel Shift per frame Item 2 >Frame Pixel Shift Seq (0028, 9415) Item 1 >>Subtraction Item ID (0028, 9416) >>Mask Sub-pix Shift (0028, 6114) Item 3 >Frame Pixel Shift Seq (0028, 9415) #3 Pixel Shift 2. 0 10. 0 Item 1 >>Subtraction Item ID (0028, 9416) >>Mask Sub-pix Shift (0028, 6114) Frame #2 = 100 = 0. 08. 0 Frame #3 = 100 = 2. 010. 0 16

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames #1 #2

Enhanced XA – Pixel Shift per frame FRAME ACQUISITION and PROCESSING: Frames #1 #2 Right Leg Left Leg mask Pixel Shift 0. 0 8. 0 DICOM ENCODING: Frame Pixel Shift per frame Item 2 >Frame Pixel Shift Seq (0028, 9415) Item 1 >>Subtraction Item ID (0028, 9416) >>Mask Sub-pix Shift (0028, 6114) = 100 = 0. 08. 0 Item 2 >>Subtraction Item ID (0028, 9416) >>Mask Sub-pix Shift (0028, 6114) = 101 = 0. 0. 0 Item 3 >Frame Pixel Shift Seq (0028, 9415) #3 Pixel Shift 0. 0 -7. 0 2. 0 10. 0 Frame #2 Frame #3 Item 1 >>Subtraction Item ID (0028, 9416) >>Mask Sub-pix Shift (0028, 6114) = 100 = 2. 010. 0 Item 2 >>Subtraction Item ID (0028, 9416) >>Mask Sub-pix Shift (0028, 6114) = 101 = 0. 0-7. 0 17

Enhanced XA - Projection Pixel Size Calibration How to convert from “image pixels” to

Enhanced XA - Projection Pixel Size Calibration How to convert from “image pixels” to “object mm in patient” #Px = Object size in “image” pixels D = Object size in mm TH = Table Height TO = Dist. Table to Object Beam Angle (0018, 9449) SID = Dist. Source-Detector ISO = Dist. Source-ISO (0018, 9402) DPx = Imager Pixel Spacing #Px Isocenter Beam Angle SID D (0018, 1130) (0018, 9403) (0018, 1110) (0018, 1164) ISO TH TO Table D = # Px * D Px * SOD / SID SOD = ISO - (TH- TO) / cos°(Beam Angle) X-Ray Source 18

XA/XRF Projection Presentation State 19

XA/XRF Projection Presentation State 19

Supplement 140: new XA GSPS IOD (for 2 D) Information that may be used

Supplement 140: new XA GSPS IOD (for 2 D) Information that may be used to present angiographic projection images It includes capabilities from the Grayscale Softcopy Presentation IOD for specifying: a. the output grayscale space in P-Values b. grayscale contrast transformations including VOI LUT c. selection of the area of the image to display , rotate, flip d. image and display relative annotations, graphics, text and overlays 20

Supplement 140: new XA GSPS IOD (for 2 D) Specific capabilities are provided for

Supplement 140: new XA GSPS IOD (for 2 D) Specific capabilities are provided for the presentation of angiographic projection images: a. shutter specifications on a frame-by-frame base, b. mask subtraction including regional pixel shift c. presentation of sets of frames Similar to the XA/XRF Multi-Frame Presentation Module of the Enhanced XA/XRF 21

XA Grayscale Softcopy Presentation State Grayscale Contrast Transformations The sequence of transformations from stored

XA Grayscale Softcopy Presentation State Grayscale Contrast Transformations The sequence of transformations from stored pixel values into P-Values is explicitly defined in a conceptual model Shutter per frame The shutter coordinates per-frame may be modified in post-review Frame #1 Frame #2 Frame #3 Frame #4 Frame #5 22

XA Grayscale Softcopy Presentation State mask subtraction & regional pixel shift If Pixel Intensity

XA Grayscale Softcopy Presentation State mask subtraction & regional pixel shift If Pixel Intensity Relationship is not LOG Else SUB Contrast Frame(s) Else « TO_LOG » LUT VOI LUT … Pixel Shift & Anatomic Background Visibility If Pixel Intensity Relationship is not LOG « TO_LOG » LUT Mask Frame(s) 23

XA Grayscale Softcopy Presentation State Regional pixel shift Applicable pixel shift in case of

XA Grayscale Softcopy Presentation State Regional pixel shift Applicable pixel shift in case of multiple pixel shift regions 24

Sup 140 – Example of Regional Pixel Shift Mask frame: non-injected structures (bones, soft-tissues…)

Sup 140 – Example of Regional Pixel Shift Mask frame: non-injected structures (bones, soft-tissues…) 25

Sup 140 – Example of Regional Pixel Shift Contrast frame: injected vessels – background

Sup 140 – Example of Regional Pixel Shift Contrast frame: injected vessels – background structures moved since the mask acquisition 26

Sup 140 – Example of Regional Pixel Shift Subtraction without pixel shift: background structures

Sup 140 – Example of Regional Pixel Shift Subtraction without pixel shift: background structures are visible 27

Sup 140 – Example of Regional Pixel Shift: Select region 1 28

Sup 140 – Example of Regional Pixel Shift: Select region 1 28

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row) Regional Pixel Shift: Apply shift to mask on region 1 29

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row) 30

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row) 31

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Mask Pixel Shift (Row) … until background structures are not visible anymore 32

Sup 140 – Example of Regional Pixel Shift: Select region 2 33

Sup 140 – Example of Regional Pixel Shift: Select region 2 33

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Regional Pixel

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Regional Pixel Shift: Apply shift to mask on region 2 34

Sup 140 – Example of Regional Pixel Shift: Select region 3 35

Sup 140 – Example of Regional Pixel Shift: Select region 3 35

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Regional Pixel

Sup 140 – Example of Regional Pixel Shift Mask Pixel Shift (Column) Regional Pixel Shift: Apply shift to mask on region 3 36

Sup 140 – Example of Regional Pixel Shift Subtraction with regional pixel shift: background

Sup 140 – Example of Regional Pixel Shift Subtraction with regional pixel shift: background structures are not visible anymore 37

3 D X-Ray Angiography 38

3 D X-Ray Angiography 38

Workflow 3 D X-Ray Angiography SOP CLASS X-Ray Acquisition Procedure X-Ray 2 D Projection

Workflow 3 D X-Ray Angiography SOP CLASS X-Ray Acquisition Procedure X-Ray 2 D Projection SOP Class Reconstruction Procedure 3 D Storage SOP Class SOP CLASS In progress 3 D Presentation State SOP Class X-Ray Calibration Procedure Presentation Procedure Calibration Data Proprietary Visualization X-Ray Acquisition System 3 D Reconstruction System Visualization 3 D Visualization System 39

X-Ray 3 D Angiography Supplement 116 – In standard 2007 – – New SOP

X-Ray 3 D Angiography Supplement 116 – In standard 2007 – – New SOP Class for Multi-frame X-Ray 3 D from projections Re-use of encoding mechanisms of Enhanced CT and MR Re-use volumic descriptions of Enhanced CT and MR Additional information of the reconstruction from projections What can be done with this new SOP Class? – – – Basic 3 D visualization (slices) References to 2 D projections Description of the reconstruction application Relationship to the Equipment Coordinate System. . . 40

X-Ray 3 D Angiography – Rotational Acquisition Frame #5: X-ray settings 5 Geometry settings

X-Ray 3 D Angiography – Rotational Acquisition Frame #5: X-ray settings 5 Geometry settings 5 Frame #4: X-ray settings 4 Geometry settings 4 Frame #3: X-ray settings 3 Geometry settings 3 Optimized 3 D Reconstruction Frame #2: X-ray settings 2 Geometry settings 2 Frame #1: X-ray settings 1 Geometry settings 1 41

X-Ray 3 D Angiography – Reference to 2 D Contributing Sources Sequence (0018, 9506)

X-Ray 3 D Angiography – Reference to 2 D Contributing Sources Sequence (0018, 9506) 2 D Projection SOP Instance «A» Mask M 1. . . Contrast. . . M 2 C 1. . . Source #1: Contrib. SOP Inst = SOP Inst “A” SOP Instance description . . . C 2 X-Ray 3 D Acquisition Sequence (0018, 9507) Reconstruction 1 Reconstruction 2 Acq #1: Source Img Seq = A: M 1 to M 2 Acq #2: Source Img Seq = A: C 1 to C 2 Acquisition description X-Ray 3 D Reconstruction Sequence (0018, 9530) Mask SUB Recon #1: Acquisition Index Recon #2: Acquisition Index Reconstruction description 1. . . N N+1. . . X-Ray 3 D SOP Instance . . . N+k =1 = 12 Per-Frame Func Groups Sequence (5200, 9230) Frames #1 to #N: Recon Index =1 Frames #N+1 to #N+k: Recon Index =2 Frame description 42

X-Ray 3 D Angiography - Relationship to Equipment Image to Equipment Matrix (0028, 9520)

X-Ray 3 D Angiography - Relationship to Equipment Image to Equipment Matrix (0028, 9520) Patient Oriented Coordinate System of the 3 D slices Equipment Coordinate System of the 2 D projections P (Bx, By, Bz) P (Ax, Ay, Az) +Z O +X +Y Enhanced XA: Isocenter Reference System 43

X-Ray 3 D Angiography Presentation State 44

X-Ray 3 D Angiography Presentation State 44

X-Ray 3 D Angiography – Presentation State Needs for 3 D Angiography Presentation –

X-Ray 3 D Angiography – Presentation State Needs for 3 D Angiography Presentation – Presentation features common to all 3 D – Speficic presentation of X-Ray 3 D Angiography: • Acquisition 3 D shutter for collimation • Volume Subtraction and voxel shift • Stabilized point in all volumes (e. g. cardiac wall motion, stent stabilized) • Catheter tracking trajectory in one volume • 2 D-3 D blending presentation (3 D conic projection on 2 D fluoroscopy) N-Dimensional Presentation State • Work Item 2008 -04 -C. Addresses needs of multi-modalities • Led by Working Group 11, participation of Web 3 D and other working groups • Supplement in progress. . . 45

Conclusion Supplement 139 – Enhanced XA application cases In Public Comments. Informative (DICOM Part

Conclusion Supplement 139 – Enhanced XA application cases In Public Comments. Informative (DICOM Part 17) Will facilitate the adoption of the Enhanced XA (Sup 83) Supplement 140 – XA/XRF Presentation State In Public Comments. Enables: shutter on a frame-by-frame base, mask subtraction including regional pixel shift presentation of set of frames X-Ray 3 D Angiography New IOD approved in Standard 2007 (Sup 116) 3 D Presentation State on-going. . . Contact WG-02 chairman: francisco. sureda@med. ge. com 46