Design a Water and Wastewater Network for Qabatiya
Design a Water and Wastewater Network for Qabatiya Town Prepared By : Mustafa Ali Mohammad Alawneh Supervisor : Dr. Anan Jayousi
Content: - Objectives. - Overview of Qabatiya. - The Questionnaire. - Modeling & Analyzing the Existing Network. - Design a Future Water Network. - Design a Wastewater Network.
Objectives: - Analyze the Existing Water Distribution Network to find out the problems and suggest a solutions to solve these problems. - Design a Future Water Network to overcome the problems in the old network and to be able to meet the future water demand for the next 20 years. - Design a Wastewater Network for the town to serve the town for the next 20 years.
Overview of Qabatiya: q Location: Located in the middle of the Jenin governorate, with total area 50. 747 Km 2. q. Population: The total population of the town was 24, 439 capita in 2017.
Overview of Qabatiya: q Topography: The town elevation vary from 250 m to 450 m above the mean sea level. q Land Use: The town famous with agriculture and quarries.
The Questionnaire
The Questionnaire: SOURCE OF WATER 5% 3% 5% 17% 70% Water Tank Municipality + Gathering Well + Water Tank Municipality + Gathering Well Gathering Wall
The Questionnaire: FREQUENT DURING WEEK 16 14 14 12 Number 10 9 8 7 6 6 4 2 3 1 0 1 2 3 4 Days 0 5 6 7
The Questionnaire: PRESSURE 28% 60% 12% High Low Moderate
The Questionnaire: -
The Questionnaire: CONSUMPTION VARIARTION 180 160 Consumption (L/c/day) 140 120 100 80 60 40 20 0 0 1 2 3 4 5 Family membere 6 7 8 9 10
The Existing Water Network
The Network: q 2 Tanks. (1500 m 3 & 500 m 3). q 285 Nodes. q 301 Pipes. (1, 2, 3, 4, 6) inch. q 70 Km total length.
The Network: q Obtained the network by using the Model. Builder. q Using Thiessen Polygon Creator to divide the entire served area.
The Network: •
The Network: q. Used Demand Pattern.
Results: q When Tank-1 Works : 140 190 130 180 170 160 110 150 100 140 90 130 Pressure (m H 2 O) Pressure (m. H 2 O) 120 80 70 60 50 40 120 110 100 90 80 70 60 30 50 20 40 30 10 20 0 -10 -20 0 20 40 60 80 100 120 140 160 180 Junction Number Pressure at 2: 00 pm. 200 220 240 260 280 300 10 0 0 20 40 60 80 100 120 140 160 180 Junction Number Pressure at 4: 00 am. 200 220 240 260 280 300
Results: 3. 2 0. 8 3 2. 8 0. 7 2. 6 2. 4 0. 6 2. 2 0. 5 Velocity (m/s) Velocity ( m/s) 2 1. 8 1. 6 1. 4 1. 2 0. 4 0. 3 1 0. 8 0. 2 0. 6 0. 4 0. 1 0. 2 0 0 0 20 40 60 80 100 120 140 160 180 Pipe Number 200 Velocity at 2: 00 pm. 220 240 260 280 300 320 0 20 40 60 80 100 120 140 160 180 Pipe Number 200 220 Velocity at 4: 00 am. 240 260 280 300 320
Results: 120 q. When Tank-2 take a place. 100 80 Pressure (m H 2 O) 60 40 20 0 0 50 100 150 -20 -40 -60 Junction Number Pressure at 10: 00 pm. 200 250 300
The Designed Water Network
The Designed Network: q General Conditions: Ø 24 hrs. Supply. Ø Separate the Network. Ø Design period 20 years. Ø Modify the old & the small pipes. Ø Used the same Demand Pattern.
The Designed Network: •
The Designed Network: •
The Designed Network: q Results: 130 180 170 120 160 110 150 100 140 130 120 80 Pressure (m. H 2 O) 90 70 60 50 110 100 90 80 70 60 40 50 30 40 20 30 20 10 0 20 40 60 80 100 120 140 160 Junction Number 180 200 Pressure at 2: 00 pm. 220 240 260 280 300 0 0 20 40 60 80 100 120 140 160 Junction Number 180 Pressure at 4: 00 am. 200 220 240 260 280 300
The Designed Network: q Used a PRV: PRV Properties
The Designed Network: q Results after used a PRV: 120 150 140 110 130 100 120 90 110 100 Pressure (m. H 2 O) 80 70 60 50 40 30 30 20 20 10 0 90 10 0 20 40 60 80 100 120 140 160 Junction Number 180 200 Pressure at 2: 00 pm. 220 240 260 280 300 0 0 20 40 60 80 100 120 140 160 Junction Number 180 Pressure at 4: 00 am. 200 220 240 260 280 300
The Designed Network: 3. 1 3 2. 9 2. 8 2. 7 2. 6 2. 5 2. 4 2. 3 2. 2 2. 1 2 1. 9 1. 8 1. 7 1. 6 1. 5 1. 4 1. 3 1. 2 1. 1 1 0. 9 0. 8 0. 7 0. 6 0. 5 0. 4 0. 3 0. 2 0. 1 0 0. 8 0. 75 0. 7 0. 65 0. 6 0. 55 Velocity ( m/s) q Results: 0. 5 0. 4 0. 35 0. 3 0. 25 0. 2 0. 15 0. 1 0. 05 0 20 40 60 80 100 120 140 160 Pipe Number 180 200 Velocity at 2: 00 pm. 220 240 260 280 300 0 0 20 40 60 80 100 120 140 160 Pipe Number 180 Velocity at 4: 00 am. 200 220 240 260 280 300
The Designed Network: q Final Modified Network.
The Designed Network: q Results: Ø Length of Modified Pipes: Diameter Length (m) (in) 1 1789 2 7565 3 4902 4 13028 6 6879 8 163 10 1404
The Designed Network: •
24 Demand Cumulative Difference between Hours/Day pattern demand pattern 24 hours and cumulative 1 0. 7 -0. 3 2 0. 6 1. 3 -0. 7 3 0. 4 1. 7 -1. 3 4 0. 4 2. 1 -1. 9 5 0. 6 2. 7 -2. 3 6 0. 9 3. 6 -2. 4 7 1 4. 6 -2. 4 8 1. 2 5. 8 -2. 2 9 1. 2 7 -2 10 1. 2 8. 2 -1. 8 11 1. 2 9. 4 -1. 6 12 1. 1 10. 5 -1. 5 13 1. 1 11. 6 -1. 4 14 1. 4 13 -1 15 1. 4 14. 4 -0. 6 16 1. 4 15. 8 -0. 2 17 1. 4 17. 2 0. 2 18 1. 2 18. 4 0. 4 19 1. 2 19. 6 0. 6 20 1. 1 20. 7 21 1 21. 7 0. 7 22 0. 8 22. 5 0. 5 23 0. 8 23. 3 0. 3 24 0. 7 24 0
The Designed Network: q Cost Estimate: Diameter Length (in) (m) 1 Installation and Unit price Total price fittings /m (NIS) Tax Transmission Trench Excavation Trench backfilling 1789 1 28 22 30 15 95 169, 955 2 7565 1 30 25 40 20 115 869, 975 3 4902 1 35 28 42 25 130 637, 260 4 13028 1 67 50 64 30 211 2, 748, 908 6 6879 1 105 60 74 35 274 1, 884, 846 8 163 1 145 70 75 40 330 53, 790 10 1404 1 200 80 80 45 405 56, 8620 12 775 1 300 150 160 90 700 542, 500 Item Unit Quantity Unit price Total price The Pressure Reduce Valve Item 1 50, 000
The Designed Wastewater Network
Wastewater Network: q The town doesn’t have a Wastewater Network. q People depend on the suction to dispose the wastes. q The terrain of the town allows to use gravity flow concept. q Part of a sewage network designed, to represent the concept of gravity flow.
Wastewater Network: q Location of the Outfall, and the recommended Treatment Plant.
Wastewater Network: q Assumption and Constrains for the Design: • Design period 20 years. • Future Population = 40, 571 capita. • 120 L/C-D. water demand. • 80% of produced waste water from consumed water. • 20% infiltration. • Peak factor calculated by (PF =14 P-1/6). • The maximum distance between manholes is 30 m. • PVC circular pipes. • Velocity constrains between (0. 6 – 3) m/s. • Cover constrains between (1 – 3. 5) m. • Slope constrains between (1 – 12) %.
Wastewater Network: q The designed part of the sewage network.
Wastewater Network: •
Wastewater Network: q Results: 14 13 12 11 10 9 8 Slope % Ø Slope. 7 6 5 4 3 2 1 0 0 50 100 150 200 250 300 350 Conduit Number 400 450 500 550 600 650
Wastewater Network: q Results: 3. 4 3. 2 3 Ø Velocity. 2. 8 2. 6 2. 4 2. 2 Velocity 2 1. 8 1. 6 1. 4 1. 2 1 0. 8 0. 6 0. 4 0. 2 0 0 50 100 150 200 250 300 350 Conduit Number 400 450 500 550 600 650
Wastewater Network: q Results: Ø Covers: • Maximum cover.
Wastewater Network: q Results: Ø Covers: • Drop Manholes.
Wastewater Network: q Results: Ø Covers: • Difficult Terrain.
Wastewater Network: q Results: 10% 2% 2% Ø Diameters. Used Diameter 15 12 10 86% 8
- Slides: 45