Data Converters EECT 7327 Oversampling ADC Fall 2014

  • Slides: 24
Download presentation
Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling ADC –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling ADC – 1–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Nyquist-Rate ADC •

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Nyquist-Rate ADC • The “black box” version of the quantization process • Digitizes the input signal up to the Nyquist frequency (fs/2) • Minimum sampling frequency (fs) for a given input bandwidth • Each sample is digitized to the maximum resolution of the converter – 2–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Anti-Aliasing Filter (AAF)

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Anti-Aliasing Filter (AAF) – 3– • Input signal must be bandlimited prior to sampling • Nyquist sampling places stringent requirement on the roll-off characteristic of AAF • Often some oversampling is employed to relax the AAF design (better phase response too) • Decimation filter (digital) can be linear-phase

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling ADC •

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling ADC • Sample rate is well beyond the signal bandwidth • Coarse quantization is combined with feedback to provide an accurate estimate of the input signal on an “average” sense • Quantization error in the coarse digital output can be removed by the digital decimation filter • The resolution/accuracy of oversampling converters is achieved in a sequence of samples (“average” sense) rather than a single sample; the usual concept of DNL and INL of Nyquist converters are not applicable – 4–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Relaxed AAF Requirement

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Relaxed AAF Requirement • Nyquist-rate converters • Oversampling converters OSR = fs/2 fm Band-pass oversampling Sub-sampling – 5–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling ADC •

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling ADC • Predictive type – Delta modulation • Noise-shaping type – Sigma-delta modulation – Multi-level (quantization) sigma-delta modulation – Multi-stage (cascaded) sigma-delta modulation (MASH) – 6–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling Nyquist Oversampled

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Oversampling Nyquist Oversampled OSR = M Sample rate Noise power Power Nyquist fs Δ 2/12 P Oversampled M*fs (Δ 2/12)/M M*P – 7–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Noise Shaping Push

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Noise Shaping Push noise out of signal band Large gain @ LF, low gain @ HF → Integrator? – 8–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Sigma-Delta (ΣΔ) Modulator

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Sigma-Delta (ΣΔ) Modulator First-order ΣΔ modulator • Noise shaping obtained with an integrator • Output subtracted from input to avoid integrator saturation – 9–

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Linearized Discrete-Time Model

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Linearized Discrete-Time Model Caveat: E(z) may be correlated with X(z) – not “white”! – 10 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu First-Order Noise Shaping

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu First-Order Noise Shaping Doubling OSR (M) increases SQNR by 9 d. B (1. 5 bit/oct) – 11 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu SC Implementation •

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu SC Implementation • SC integrator • 1 -bit ADC → simple, ZX detector • 1 -bit feedback DAC → simple, inherently linear – 12 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Second-Order ΣΔ Modulator

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Second-Order ΣΔ Modulator Doubling OSR (M) increases SQNR by 15 d. B (2. 5 bit/oct) – 13 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu 2 nd-Order ΣΔ

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu 2 nd-Order ΣΔ Modulator (1 -Bit Quantizer) • Simple, stable, highly-linear • Insensitive to component mismatch • Less correlation b/t E(z) and X(z) – 14 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Generalization (Lth-Order Noise

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Generalization (Lth-Order Noise Shaping) • Doubling OSR (M) increases SQNR by (6 L+3) d. B, or (L+0. 5) bit • Potential instability for 3 rd- and higher-order single-loop ΣΔ modulators – 15 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu ΣΔ vs. Nyquist

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu ΣΔ vs. Nyquist ADC’s ΣΔ ADC output (1 -bit) Nyquist ADC output • ΣΔ ADC behaves quite differently from Nyquist converters • Digital codes only display an “average” impression of the input • INL, DNL, monotonicity, missing code, etc. do not directly apply in ΣΔ converters → use SNR, SNDR, SFDR instead – 16 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Tones • The

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Tones • The output spectrum corresponding to Vi = 0 results in a tone at fs/2, and will get eliminated by the decimation filter • The 2 nd output not only has a tone at fs/2, but also a low-frequency tone – fs/2000 – that cannot be eliminated by the decimation filter – 17 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Tones • Origin

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Tones • Origin – the quantization error spectrum of the low-resolution ADC (1 -bit in the previous example) in a ΣΔ modulator is NOT white, but correlated with the input signal, especially for idle (DC) inputs. (R. Gray, “Spectral analysis of sigma-delta quantization noise”) • Approaches to “whitening” the error spectrum – Dither – high-frequency noise added in the loop to randomize the quantization error. Drawback is that large dither consumes the input dynamic range. – Multi-level quantization. Needs linear multi-level DAC. – High-order single-loop ΣΔ modulator. Potentially unstable. – Cascaded (MASH) ΣΔ modulator. Sensitive to mismatch. – 18 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Cascaded (MASH) ΣΔ

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Cascaded (MASH) ΣΔ Modulator • Idea: to further quantize E(z) and later subtract out in digital domain • The 2 nd quantizer can be a ΣΔ modulator as well – 19 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu 2 -1 Cascaded

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu 2 -1 Cascaded Modulator DNTF – 20 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu 2 -1 Cascaded

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu 2 -1 Cascaded Modulator • E 1(z) completely cancelled assuming perfect matching between the modulator NTF (analog domain) and the DNTF (digital domain) • A 3 rd-order noise shaping on E 2(z) obtained • No potential instability problem – 21 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Integrator Noise INT

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu Integrator Noise INT 1 dominates the overall noise Performance! Delay ignored – 22 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu References 1. B.

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu References 1. B. E. Boser and B. A. Wooley, JSSC, pp. 1298 -1308, issue 6, 1988. 2. B. H. Leung et al. , JSSC, pp. 1351 -1357, issue 6, 1988. 3. T. C. Leslie and B. Singh, ISCAS, 1990, pp. 372 -375. 4. B. P. Brandt and B. A. Wooley, JSSC, pp. 1746 -1756, issue 12, 1991. 5. F. Chen and B. H. Leung, JSSC, pp. 453 -460, issue 4, 1995. 6. R. T. Baird and T. S. Fiez, TCAS 2, pp. 753 -762, issue 12, 1995. 7. T. L. Brooks et al. , JSSC, pp. 1896 -1906, issue 12, 1997. 8. A. K. Ong and B. A. Wooley, JSSC, pp. 1920 -1934, issue 12, 1997. 9. S. A. Jantzi, K. W. Martin, and A. S. Sedra, JSSC, pp. 1935 -1950, issue 12, 1997. 10. A. Yasuda, H. Tanimoto, and T. Iida, JSSC, pp. 1879 -1886, issue 12, 1998. 11. A. R. Feldman, B. E. Boser, and P. R. Gray, JSSC, pp. 1462 -1469, issue 10, 1998. 12. H. Tao and J. M. Khoury, JSSC, pp. 1741 -1752, issue 12, 1999. 13. E. J. van der Zwan et al. , JSSC, pp. 1810 -1819, issue 12, 2000. 14. I. Fujimori et al. , JSSC, pp. 1820 -1828, issue 12, 2000. 15. Y. Geerts, M. S. J. Steyaert, W. Sansen, JSSC, pp. 1829 -1840, issue 12, 2000. – 23 –

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu References 16. T.

Data Converters EECT 7327 Oversampling ADC Fall 2014 Professor Y. Chiu References 16. T. Burger and Q. Huang, JSSC, pp. 1868 -1878, issue 12, 2001. 17. K. Vleugels, S. Rabii, and B. A. Wooley, JSSC, pp. 1887 -1899, issue 12, 2001. 18. S. K. Gupta and V. Fong, JSSC, pp. 1653 -1661, issue 12, 2002. 19. R. Schreier et al. , JSSC, pp. 1636 -1644, issue 12, 2002. 20. J. Silva et al. , CICC, 2002, pp. 183 -190. 21. Y. -I. Park et al. , CICC, 2003, pp. 115 -118. 22. L. J. Breems et al. , JSSC, pp. 2152 -2160, issue 12, 2004. 23. R. Jiang and T. S. Fiez, JSSC, pp. 63 -74, issue 12, 2004. 24. P. Balmelli and Q. Huang, JSSC, pp. 2161 -2169, issue 12, 2004. 25. K. Y. Nam et al. , CICC, 2004, pp. 515 -518. 26. X. Wang et al. , CICC, 2004, pp. 523 -526. 27. A. Bosi et al. , ISSCC, 2005, pp. 174 -175. 28. N. Yaghini and D. Johns, ISSCC, 2005, pp. 502 -503. 29. G. Mitteregger et al. , JSSC, pp. 2641 -2649, issue 12, 2006. 30. R. Schreier et al. , JSSC, pp. 2632 -2640, issue 12, 2006. – 24 –