Dark Energy Expanding Universe Accelerating Universe Dark Energy

  • Slides: 26
Download presentation
Dark Energy Expanding Universe Accelerating Universe Dark Energy Scott Dodelson March 7, 2004

Dark Energy Expanding Universe Accelerating Universe Dark Energy Scott Dodelson March 7, 2004

The Universe is Expanding

The Universe is Expanding

Einstein’s Equations govern evolution of Scale Factor Mass x Acceleration = Gravitational Force The

Einstein’s Equations govern evolution of Scale Factor Mass x Acceleration = Gravitational Force The extent to which expansion is speeding up Due to the contents of the universe We can learn about the contents of the universe by studying how the expansion varies with time

Supernovae appear fainter in an accelerating universe • Accelerating universe was expanding slower in

Supernovae appear fainter in an accelerating universe • Accelerating universe was expanding slower in the past than non-accelerating universe • Universe takes longer to get from early scale to today in accelerating universe • Light has more time to travel from SN at early scale to us in accelerating universe • SN appears fainter

Type Ia Supernovae • Universe expanded slower in model with Dark Energy, so distance

Type Ia Supernovae • Universe expanded slower in model with Dark Energy, so distance traveled by light is greater: Expect fainter SN in Dark Energy dominated universe. Accelerating Fainter SN • Observed flux goes down as distance increases. Type Ia SN are standard candles (i. e. have identical luminosities), so apparent brightness measures distance. Decelerating Earlier times

Acceleration is surprising

Acceleration is surprising

Einstein’s Equations govern evolution of Scale Factor Mass x Acceleration = Gravitational Force The

Einstein’s Equations govern evolution of Scale Factor Mass x Acceleration = Gravitational Force The extent to which expansion is speeding up Due to the contents of the universe: Usually it is attractive, leading to deceleration

Einstein’s Theory of General Relativity: Gravitational force is proportional to Energy Density + Pressure

Einstein’s Theory of General Relativity: Gravitational force is proportional to Energy Density + Pressure Accelerating universe implies contents have negative pressure

Another View Kinetic Energy = - Potential Energy Expansion Rate (or the speed of

Another View Kinetic Energy = - Potential Energy Expansion Rate (or the speed of the rocket) Decreases as rocket gets further from Earth

As universe expands, it should become more dilute …

As universe expands, it should become more dilute …

Energy density due to matter decreases as universe expands • Energy per particle is

Energy density due to matter decreases as universe expands • Energy per particle is proportional to mass • Number of particles in a fixed volume goes down as the universe expands (think of number of raisins in a fixed volume as the bread rises) Decrease in energy density leads to decrease in Expansion Rate

Dark energy density must not decrease with expansion!

Dark energy density must not decrease with expansion!

Dark Energy is causing the universe to accelerate …

Dark Energy is causing the universe to accelerate …

What do we know about Dark Energy? • Constitutes 2/3 of energy in the

What do we know about Dark Energy? • Constitutes 2/3 of energy in the universe • Is smoothly distributed and invisible Doesn’t clump into galaxies like matter • Has negative pressure Leads to Acceleration

What might dark energy be and how is it related to the rest of

What might dark energy be and how is it related to the rest of physics? This is the deepest question confronting physicists today. Nothing in the Standard Model of Particle Physics can be the dark energy.

It might be quantum mechanical fluctuations in the vacuum • “Nature abhors a vacuum”

It might be quantum mechanical fluctuations in the vacuum • “Nature abhors a vacuum” • Heisenberg’s Uncertainty Principle: even in empty space, particles (and anti-particles) pop in and out for short periods of time • There is energy associated with these quantum fluctuations … • And they produce negative pressure!

Vacuum energy is called a Cosmological Constant When we calculate the energy density associated

Vacuum energy is called a Cosmological Constant When we calculate the energy density associated with vacuum fluctuations … The energy is too big by 128 orders of magnitude: 100, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000, 000

We have ideas … • The cosmological constant calculation requires deeper understanding of quantum

We have ideas … • The cosmological constant calculation requires deeper understanding of quantum mechanics • Perhaps the dark energy was not constant, evolves in time (this happened in the past) • Perhaps dark energy is a hint of the extra dimensions predicted by string theory

And we have plans … Joint Dark Energy Mission NASA/DOE partnership to study dark

And we have plans … Joint Dark Energy Mission NASA/DOE partnership to study dark energy from space: Launch in ~2010 Bulletin: FNAL has just joined the collaboration!

Conclusions • The Universe is accelerating • Dark Energy is therefore the dominant constituent

Conclusions • The Universe is accelerating • Dark Energy is therefore the dominant constituent in the universe • We do not know what dark energy is (vacuum fluctuations? Extra dimensions? ) • We are planning missions which will tell us