DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange

  • Slides: 24
Download presentation
DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ Facility Monitoring System

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ Facility Monitoring System with IEEE 1451 Interface Presented by: Marinov, Todor Djamiykov, Georgi Nikolov, Dimitar Alexiev E-mail: mbm@tu-sofia. bg Niš, November 2010 -1 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 1. Introduction q

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 1. Introduction q q Raising cost of energy in recent years. Rapid growth and interest in building more sustainable and healthier buildings. q Interest in building facilities to be more energy efficient while also enhancing a facility’s indoor environmental quality (IEQ). Niš, November 2010 -2 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 1. Introduction q

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 1. Introduction q One of the major reasons for this shortcut occurs is that the quality, accuracy, and quantity of indoor environmental sensors that are typically used are not sufficient to successfully and cost effectively implement many of the energy efficiency approaches. q Even more often, information about the quality of the indoor environment is not sensed at all due to the cost of doing so, leading to situations where systems do not properly control, resulting in complaints, and subsequent disabling of the control approaches, and finally the loss of the expected energy savings. Niš, November 2010 -3 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 2. Requirements for

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 2. Requirements for a effective Facility Monitoring System q To enable effective energy savings applications such as demand controlled ventilation, a multi-parameter, multiple location, facility monitoring system should be implemented, which meets at the following requirements: q Facility Monitoring System Requirements: 1. Low first equipment and installation cost per parameter (for different locations), 2. Low maintenance and calibration costs, 3. Possibility for sensing a broad range of (indoor) environmental parameters & air contaminants, 4. Satisfactory accuracy and long term stability. Niš, November 2010 -4 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 3. Traditional Approaches

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 3. Traditional Approaches to Sensing Air Parameters in a Facility q Indoor air parameters such as temperature, humidity, carbon dioxide and other parameters have traditionally been sensed by wiring individual air parameter sensors into a building management system (BMS). q This works fine for simple, inexpensive and reliable sensors such as temperature sensors. However, building monitoring requirements for indoor air parameters have increased so that many locations need to be monitored for other parameters such as: q relative humidity, dewpoint temperature, q carbon dioxide (CO 2), q carbon monoxide (CO), q total volatile organic compounds (TVOCs), q odors, fine particles, etc. Niš, November 2010 -5 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 3. Traditional Approaches

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 3. Traditional Approaches to Sensing Air Parameters in a Facility Problems with Traditional Sensor Approaches q High First Cost q Many sensors required for multiple parameter, multiple location sensing q First cost to sense many parameters quickly becomes too high q Commercial grade sensors often used, causing poor accuracy & reliability q High cost of installation & integration q A single hard wired Building Management System CO 2 or RH point can range from: € 500 to € 1000/pt. Niš, November 2010 -6 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 3. Traditional Approaches

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 3. Traditional Approaches to Sensing Air Parameters in a Facility Problems with Traditional Sensor Approaches q High Operating Costs q Accuracy required often beyond sensor limits q Poor performance results = Lost energy savings q High maintenance cost q Every sensor needs periodic calibration (1 x - 4 x/yr) Niš, November 2010 -7 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 4. The IEEE

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 4. The IEEE 1451 Approach for Sensing Air Parameters IEEE 1451 Standard for Smart Transducer q The IEEE 1451 Standard provides a set of common interfaces for connecting sensors and actuators to existing instrumentation and control networks and lays a path for the sensor community to design systems for future growth. q It is intended to provide an easy upgrade path for connectivity of products from any manufacturer of transducers or networks. q The IEEE 1451 Standard can be basically viewed as a q software and q hardware oriented interfaces. Niš, November 2010 -8 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 4. The IEEE

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 4. The IEEE 1451 Approach for Sensing Air Parameters IEEE 1451 Standard for Smart Transducer q The software portion is an information model defining the behaviors of a smart transducer using object model approach and the path for network connectivity. This work has been completed and become the IEEE 1451. 1 Standard. q The sensor usage crosses various industries, therefore the hardware portion of the IEEE 1451 Standard is divided into 1451. 2, 1451. 3, 1451. 4, 1451. 5 etc. Niš, November 2010 -9 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ IEEE 1451 Standards

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ IEEE 1451 Standards - Another View IEEE 1451. 4 Analog + Digital 2 Txdcr IEEE 1451. 3 Distributed Multidrop Bus 2 or 4 IEEE 1451. 5 Wireless 0 Digital TII Interface Txdcr Bus Interface 10 IEEE 1451. 1 Common Object Model Mixed-Mode Transducer IEEE 1451. 2 Digital, Point-to-Point IEEE P 1451. 0 Common Functionality & TEDS Wireless Interface Any Network-Capable Application Processor (NCAP) TEDS A/D Txdcr Smart Transducer Interface Module (STIM) Transducer Bus Interface Module (TBIM) Wireless Transducer TXdcr = Transducer (Sensor or Actuator) Niš, November 2010 -

DAAD Projekt „ISSNBS“ Deutscher Akademischer Austausch Dienst German Academic Exchange Service 5. IEEE 1451.

DAAD Projekt „ISSNBS“ Deutscher Akademischer Austausch Dienst German Academic Exchange Service 5. IEEE 1451. 4 Mixed-Mode Transducer NI Plug & Play Sensor Partner Program Collaboration NI Alliance Partners System Integration Web Based Plug and Play Sensor Advisor Communicate to End-Users Backwards Compatibility IEEE P 1451. 4 Web Based Virtual TEDS database Multi-Vendor Smart TEDS Sensors Measurement Hardware Programming Software Development Kit TEDS Lab. VIEW Library TEDS Lab. VIEW Broad-Based Industry. Library Adoption Niš, November 2010 - 11 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451. 4 Mixed-Mode Transducer q The drive for transducers with built-in identification, manufacture data such as calibration, and extended functionality has increased sharply over the last years. q The transducer community, started the work on the IEEE 1451. 4 standard to meet the demands and needs of the changing industry. Niš, November 2010 - 12 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451. 4 Mixed-Mode Transducer q The main objectives of the proposed standard are to: q Enable plug and play at the transducer level by providing a common communication interface compatible with conventional transducers. q Enable and simplify the creation of smart transducers. q Facilitate the support of multiple networks. q Make a bridge between the conventional transducers and the networked transducers. Niš, November 2010 - 13 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451. 4 Mixed-Mode Transducer IEEE 1451. 4 - Mixed-Mode Communication Interface (MMI) and Transducer Electronic Data Sheet (TEDS) Basic Architecture Niš, November 2010 - 14 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 5. IEEE 1451. 4 Mixed-Mode Transducer IEEE 1451. 4 Transducer Electronic Data Sheet (TEDS) (Dot 4 TEDS) q UUID (Universal Unique Identifier) q q Basic TEDS (8 bytes) q q q Supplied by EEPROM (DS 2433) manufacturer (6 bytes) Model Number (15 bits) Version Letter (5 bits, A-Z) Version Number (6 bits) Manufacturer ID (14 bits) Serial Number (6 bits) Manufacturer’s TEDS q Sensor type and calibration parameters (16 bytes) Niš, November 2010 - 15 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451. 4 Gas Sensors Implementation Basic Architecture Niš, November 2010 - 16 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451. 4 Gas Sensors Implementation System overview q. Prototype based on an 8 -bit microcontroller (PIC 16 F 87 х) from Microchip q. TEDS – 4 k EEPROM (DS 2433) q Main advantages : q q Single power supply (+5 /12 V), Reduced power consumption, Low cost, Self-calibration capability. Niš, November 2010 - 17 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451. 4 Gas Sensors Implementation Plug-in Module as IEEE 1451. 4 – Class 2 Multi-Wire Gas Sensor Niš, November 2010 - 18 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451. 4 Gas Sensors Implementation Signal conditioner q. The signal conditioning circuit (for the sensor resistance) is based on a q q voltage divider connected to the ADC microcontroller input through a low-pass filter and amplifier featuring a high input impedance. Niš, November 2010 - 19 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451. 4 Gas Sensors Implementation Basic microcontroller module Niš, November 2010 - 20 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451.

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ 6. IEEE 1451. 4 Gas Sensors Implementation Microcontroller module with differentt Plug-in modules Niš, November 2010 - 21 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ Conclusion q Detection

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ Conclusion q Detection of gases or vapors in air is becoming important mainly in the context of energy efficiency, safety and environment control. q In the last 10 years a great effort is applied to realize low-cost, compact instruments that can detect the presence of chemical compounds and pollutants. q Embedded with a microcontroller unit the smart sensor have much more built-in intelligence over the traditional sensors. So they can perform more intelligent functions such as: q Self-identification, q Self adaptation, q Self-calibration etc. Niš, November 2010 - 22 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ Conclusion q One

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ Conclusion q One of the most attractive advantages that a smart sensor offers is the networking capability defined by the IEEE 1451 smart transducer interface family of standards. q One of the basic aims of this standards is to support the implementation of plug and play functionality at the sensor/actuator level, standardizing data structures and communication. q The development of a gas sensor system with inter-changeable sensor heads which can be used with a variety of sensor technologies was presented. q By the implementation IEEE 1451. 4 TEDS for automatic configuration of the sensor heads was used. Niš, November 2010 - 23 -

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ ACKNOWLEDGMENT The support

DAAD Deutscher Akademischer Austausch Dienst German Academic Exchange Service Projekt „ISSNBS“ ACKNOWLEDGMENT The support of q Contract # 09 NI 044 -03 NIS - TU Sofia and q Ai. F Contract # 1841 -04 -329 is acknowledged. Niš, November 2010 - 24 -