CSE 203 B Convex Optimization Chapter 9 Unconstrained
CSE 203 B Convex Optimization: Chapter 9: Unconstrained Minimization CK Cheng Dept. of Computer Science and Engineering University of California, San Diego 1
Chapter 9 Unconstrained Minimization • • • Introduction Taylor’s Expansion & Bounds Descent Methods Newton Method Summary 2
Introduction 3
Taylor’s Expansion & Bounds: Scalar case 4
Taylor’s Expansion & Bounds: Example 5
Taylor’s Expansion & Bounds: Bounds 4 1 3 2 1 6
Taylor’s Expansion & Bounds: Bounds 1 7
Taylor’s Expansion & Bounds: Bounds 2 8
3 Taylor’s Expansion & Bounds: Bounds 9
Taylor’s Expansion & Bounds: Bounds 10
Taylor’s Expansion & Bounds 11
II. Descent Methods 12
II. Descent Methods: Example 13
II. Descent Methods: Descent for various norms 14
II. Descent Methods: Descent for quadratic norm 15
II. Descent Methods: Descent for quadratic norm 16
II. Descent Methods: Descent for L 1 norm 17
Gradient descent method: Convergence analysis 18
Gradient descent method : Convergence analysis 19
Newton Step 20
Newton Method : Convergence analysis 21
Newton Method: Affine Invariant 22
Summary 1. Gradient Descent Method: (minimization solution) 1. Vector operations per iteration 2. Linear convergence rate 2. Newton’s Method: (equality solution) 1. Matrix operations per iteration 2. Quadratic convergence rate (near the solution) 3. Gradient Descent Method Variations: 1. Conjugate gradient method 2. Nesterov gradient descent method 3. Quasi-Newton method 23
- Slides: 23