CS 213 Floating Point 452006 Topics n n




























- Slides: 28

CS 213 Floating Point 4/5/2006 Topics n n – 1– IEEE Floating Point Standard Rounding Floating Point Operations Mathematical properties CS 213, S’ 06

Floating Point Puzzles n For each of the following C expressions, either: l Argue that it is true for all argument values l Explain why not true • x == (int)(float) x int x = …; • x == (int)(double) x float f = …; • f == (float)(double) f double d = …; • d == (float) d • f == -(-f); Assume neither d nor f is Na. N • 2/3 == 2/3. 0 • d < 0. 0 ((d*2) < 0. 0) • d > f -f > -d • d * d >= 0. 0 • (d+f)-d == f – 2– CS 213, S’ 06

IEEE Floating Point Representations n Encodes rational numbers of the form V=x*(2^y) n Useful for very large numbers or numbers close to zero IEEE Standard 754 n Established in 1985 as uniform standard for floating point arithmetic l Before that, many idiosyncratic formats n Supported by all major CPUs Driven by Numerical Concerns n n Nice standards for rounding, overflow, underflow Hard to make go fast l Numerical analysts predominated over hardware types in defining standard – 3– CS 213, S’ 06

Fractional Binary Numbers 2 i 2 i– 1 4 2 1 bi bi– 1 • • • b 2 b 1 b 0. b– 1 b– 2 b– 3 1/2 1/4 1/8 • • • b–j • • • 2–j Representation – 4– n Bits to right of “binary point” represent fractional powers of 2 n Represents rational number: CS 213, S’ 06

Frac. Binary Number Examples Value Representation 5 -3/4 2 -7/8 63/64 101. 112 10. 1112 0. 1111112 Observations Divide by 2 by shifting right (the point moves to the left) n Multiply by 2 by shifting left (the point moves to the right) n Numbers of form 0. 111111… 2 just below 1. 0 n l 1/2 + 1/4 + 1/8 + … + 1/2 i + … 1. 0 l Use notation 1. 0 – – 5– CS 213, S’ 06

Representable Numbers Limitation Can only exactly represent numbers of the form x/2 k n Other numbers have repeating bit representations n Value Representation 1/3 0. 010101[01]… 2 1/5 0. 00110011[0011]… 2 1/10 0. 000110011[0011]… 2 – 6– CS 213, S’ 06

Floating Point Representation Numerical Form n – 1 s M 2 E l Sign bit s determines whether number is negative or positive l Significand M normally a fractional value in range [1. 0, 2. 0). l Exponent E weights value by power of two Encoding s exp frac MSB is sign bit n exp field encodes E n frac field encodes M n – 7– CS 213, S’ 06

Floating Point Precisions Encoding s exp frac MSB is sign bit n exp field encodes E n frac field encodes M n Sizes n Single precision: 8 exp bits, 23 frac bits l 32 bits total n Double precision: 11 exp bits, 52 frac bits l 64 bits total n Extended precision: 15 exp bits, 63 frac bits l Only found in Intel-compatible machines l Stored in 80 bits » 1 bit wasted – 8– CS 213, S’ 06

“Normalized” Numeric Values Condition n exp 000… 0 and exp 111… 1 Exponent coded as biased value E = Exp – Bias l Exp : unsigned value denoted by exp l Bias : Bias value » Single precision: 127 (Exp: 1… 254, E: -126… 127) » Double precision: 1023 (Exp: 1… 2046, E: -1022… 1023) » in general: Bias = 2 e-1 - 1, where e is number of exponent bits Significand coded with implied leading 1 M = 1. xxx…x 2 l xxx…x: bits of frac l Minimum when 000… 0 (M = 1. 0) l Maximum when 111… 1 (M = 2. 0 – ) l Get extra leading bit for “free” – 9– CS 213, S’ 06

Normalized Encoding Example Value Float F = 15213. 0; n 1521310 = 111011012 = 1. 11011012 X 213 Significand M = frac = 1. 11011012 1101101000002 Exponent E = Bias = Exp = 13 127 140 = 100011002 Floating Point Representation: Hex: Binary: 140: 15213: – 10 – 4 6 6 D B 4 0 0 0100 0110 1101 1011 0100 0000 100 0110 0 1101 1011 01 CS 213, S’ 06

Denormalized Values Condition n exp = 000… 0 Value n Exponent value E = –Bias + 1 l Note: not simply E= – Bias n Significand value M = 0. xxx…x 2 l xxx…x: bits of frac Cases n exp = 000… 0, frac = 000… 0 l Represents value 0 l Note that have distinct values +0 and – 0 n exp = 000… 0, frac 000… 0 l Numbers very close to 0. 0 – 11 – CS 213, S’ 06

Special Values Condition n exp = 111… 1 Cases n exp = 111… 1, frac = 000… 0 l Represents value (infinity) l Operation that overflows l Both positive and negative l E. g. , 1. 0/0. 0 = 1. 0/ 0. 0 = + , 1. 0/ 0. 0 = n exp = 111… 1, frac 000… 0 l Not-a-Number (Na. N) l Represents case when no numeric value can be determined l E. g. , sqrt(– 1), – 12 – CS 213, S’ 06

Summary of Floating Point Real Number Encodings Na. N – 13 – -Normalized +Denorm -Denorm 0 +0 +Normalized + Na. N CS 213, S’ 06

Tiny Floating Point Example 8 -bit Floating Point Representation n the sign bit is in the most significant bit. n the next four bits are the exponent, with a bias of 7. the last three bits are the frac n l Same General Form as IEEE Format n n normalized, denormalized representation of 0, Na. N, infinity 7 6 s – 14 – 0 3 2 exp frac CS 213, S’ 06

Values Related to the Exponent – 15 – Exp exp E 2 E 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 -6 -6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6 +7 n/a 1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8 16 32 64 128 (denorms) (inf, Na. N) CS 213, S’ 06

Dynamic Range E Value 0000 001 0000 010 -6 -6 -6 0 1/8*1/64 = 1/512 2/8*1/64 = 2/512 closest to zero 0000 0001 110 111 000 001 -6 -6 6/8*1/64 7/8*1/64 8/8*1/64 9/8*1/64 = = 6/512 7/512 8/512 9/512 largest denorm smallest norm 0110 0111 110 111 000 001 010 -1 -1 0 0 0 14/8*1/2 15/8*1/2 8/8*1 9/8*1 10/8*1 = = = 14/16 15/16 1 9/8 10/8 7 7 n/a 14/8*128 = 224 15/8*128 = 240 inf s exp 0 0 Denormalized 0 … numbers 0 0 … 0 0 Normalized 0 numbers 0 0 … 0 0 0 – 16 – frac 1110 1111 000 closest to 1 below closest to 1 above largest norm CS 213, S’ 06

Distribution of Values 6 -bit IEEE-like format n e = 3 exponent bits n f = 2 fraction bits Bias is 3 n Notice how the distribution gets denser toward zero. – 17 – CS 213, S’ 06

Distribution of Values (close-up view) 6 -bit IEEE-like format n e = 3 exponent bits n f = 2 fraction bits Bias is 3 n Note: Smooth transition between normalized and denormalized numbers due to definition E = 1 - Bias for denormalized values – 18 – CS 213, S’ 06

Interesting Numbers Description Zero exp frac Numeric Value 00… 00 0. 0 Smallest Pos. Denorm. 00… 00 00… 01 2– {23, 52} X 2– {126, 1022} Single 1. 4 X 10– 45 n Double 4. 9 X 10– 324 n Largest Denormalized 00… 00 11… 11 (1. 0 – ) X 2– {126, 1022} Single 1. 18 X 10– 38 n Double 2. 2 X 10– 308 n Smallest Pos. Normalized 00… 01 00… 00 1. 0 X 2– {126, 1022} n One Just larger than largest denormalized 01… 11 00… 00 1. 0 Largest Normalized 11… 10 11… 11 (2. 0 – ) X 2{127, 1023} Single 3. 4 X 1038 n Double 1. 8 X 10308 n – 19 – CS 213, S’ 06

Floating Point Operations Conceptual View n First compute exact result n Make it fit into desired precision l Possibly overflow if exponent too large l Possibly round to fit into frac Rounding Modes (illustrate with $ rounding) $1. 40 $1. 60 $1. 50 Zero $1 $1 n Round down (- ) $1 n Round up (+ ) $2 n Nearest Even (default) n $2. 50 –$1. 50 $1 $1 $2 $2 –$1 $2 $3 $2 –$1 $2 –$2 Note: 1. Round down: rounded result is close to but no greater than true result. 2. Round up: rounded result is close to but no less than true result. – 20 – CS 213, S’ 06

Closer Look at Round-To-Even Default Rounding Mode n All others are statistically biased l Sum of set of positive numbers will consistently be over- or under- estimated Applying to Other Decimal Places / Bit Positions n When exactly halfway between two possible values l Round so that least significant digit is even n E. g. , round to nearest hundredth 1. 2349999 1. 2350001 1. 2350000 1. 2450000 – 21 – 1. 23 1. 24 (Less than half way) (Greater than half way) (Half way—round up) (Half way—round down) CS 213, S’ 06

Rounding Binary Numbers Binary Fractional Numbers “Even” when least significant bit is 0 n Half way when bits to right of rounding position = 100… 2 n Examples Round to nearest 1/4 (2 bits right of binary point) Value Binary Rounded Action Rounded Value 2 3/32 10. 000112 10. 002 (<1/2—down) 2 2 3/16 10. 001102 10. 012 (>1/2—up) 2 1/4 2 7/810. 111002 11. 002 (1/2—up) 3 2 5/810. 101002 10. 102 (1/2—down) 2 1/2 n – 22 – CS 213, S’ 06

FP Multiplication Operands (– 1)s 1 M 1 2 E 1 * (– 1)s 2 M 2 2 E 2 Exact Result (– 1)s M 2 E n n n Sign s: s 1 ^ s 2 Significand M: M 1 * M 2 Exponent E: E 1 + E 2 Fixing n If M ≥ 2, shift M right, increment E n If E out of range, overflow Round M to fit frac precision n Implementation n – 23 – Biggest chore is multiplying significands CS 213, S’ 06

FP Addition Operands (– 1)s 1 M 1 2 E 1 (– 1)s 2 M 2 2 E 2 n E 1–E 2 (– 1)s 1 M 1 Assume E 1 > E 2 Exact Result (– 1)s M 2 E n (– 1)s 2 M 2 + Sign s, significand M: l Result of signed align & add n Exponent E: E 1 Fixing n If M ≥ 2, shift M right, increment E n if M < 1, shift M left k positions, decrement E by k Overflow if E out of range Round M to fit frac precision n – 24 – n CS 213, S’ 06

Mathematical Properties of FP Add Compare to those of Abelian Group n Closed under addition? YES l But may generate infinity or Na. N Commutative? n Associative? n YES NO l Overflow and inexactness of rounding » (3. 14+1 e 10)-1 e 10=0 (rounding) » 3. 14+(1 e 10 -1 e 10)=3. 14 0 is additive identity? YES n Every element has additive inverse n ALMOST l Except for infinities & Na. Ns Monotonicity n a ≥ b a+c ≥ b+c? ALMOST l Except for Na. Ns – 25 – CS 213, S’ 06

Math. Properties of FP Mult Compare to Commutative Ring n Closed under multiplication? YES l But may generate infinity or Na. N Multiplication Commutative? n Multiplication is Associative? n YES NO l Possibility of overflow, inexactness of rounding 1 is multiplicative identity? YES n Multiplication distributes over addition? NO n l Possibility of overflow, inexactness of rounding Monotonicity n a ≥ b & c ≥ 0 a *c ≥ b *c? ALMOST l Except for Na. Ns – 26 – CS 213, S’ 06

Floating Point in C C Guarantees Two Levels float double single precision double precision Conversions n n Casting between int, float, and double changes numeric values Double or float to int l Truncates fractional part l Like rounding toward zero l Not defined when out of range » Generally saturates to TMin or TMax n int to double l Exact conversion, as long as int has ≤ 53 bit word size n int to float l Will round according to rounding mode – 27 – CS 213, S’ 06

Summary IEEE Floating Point Has Clear Mathematical Properties n Represents numbers of form M X 2 E n Not the same as real arithmetic l Violates associativity/distributivity l Makes life difficult for compilers & serious numerical applications programmers – 28 – CS 213, S’ 06
452006 color
Fixed point representation
Aritmathic
Floating point representation
Floating point puzzles
Floating point addition flowchart
Instruction issue algorithm of pentium processor
Why use floating point numbers
4 bit two's complement
Www.xkcd.com
Floating-point number
Floating point puzzles
Mips square root
Xkcd floating point
Floating point denormalized
Floating point arithmetic examples
Floating point division algorithm in computer architecture
Express (32)10 in the revised 14-bit floating-point model
Fp adder hardware
Compound adder
Floating point operations per second
Dfa for floating point numbers
Float number
Floating point puzzles
Parts of a floating point number
Parts of a floating point number
Eascii
Integer
Ieee 754 special cases