Critical Design Review AAE 451 Team 2 Michael

  • Slides: 78
Download presentation
Critical Design Review AAE 451: Team 2 Michael Caldwell Jeff Haddin Asif Hossain James

Critical Design Review AAE 451: Team 2 Michael Caldwell Jeff Haddin Asif Hossain James Kobyra John Mc. Kinnis March 24, 2005 Kathleen Mondino Andrew Rodenbeck Jason Tang Joe Taylor Tyler Wilhelm 1

Overview n n n n n March 24, 2005 Walkaround Aircraft 3 -View Constraint

Overview n n n n n March 24, 2005 Walkaround Aircraft 3 -View Constraint Diagram Physical Properties Aerodynamics Dynamics & Controls Structures, Weights, & Landing Gear Propulsion Unique Aspects of the Design Constraint Diagram Revisited [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 2

Walkaround March 24, 2005 [ 1 2 3 4 5 6 7 8 9

Walkaround March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 3

Aircraft 3 -View n 15 min. endurance n Take-off distance ≤ 60 ft. n

Aircraft 3 -View n 15 min. endurance n Take-off distance ≤ 60 ft. n Vstall ≤ 15 ft/s n n 5. 24 ft Mission Requirements Vloiter ≤ 25 ft/s 35 ft. turn radius 3. 00 ft March 24, 2005 n Weight 1. 96 lbs n Wingspan 5. 24 ft n Length 3. 00 ft n Height 1. 50 ft n Aspect Ratio 5. 24 n Cruise Speed 23 ft/s n Max Thrust 1. 00 lb [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 4

Constraint Diagram n Wing Loading: ¡ n Power Loading: ¡ Takeoff Design Point 0.

Constraint Diagram n Wing Loading: ¡ n Power Loading: ¡ Takeoff Design Point 0. 376 lbf/ft 2 32. 74 lbf/hp Li. Poly n Weight: 1. 97 lbf n Wing Area: 5. 24 ft 2 n Power: 0. 060 hp Design Space March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 5

Tabular Summary of Parameters n n n n March 24, 2005 Wing Area 5.

Tabular Summary of Parameters n n n n March 24, 2005 Wing Area 5. 24 ft 2 Canard Area 1. 432 ft 2 Tail Area (each) 0. 915 ft 2 Wetted Area 23. 08 ft 2 Mean Chord 1. 00 ft Wing Taper Ratio 0. 7 Landing Gear Skis (interchangeable) Motor Type Brushless Wing Dihedral 4º Canard Dihedral -4º Center of Gravity 1. 70 ft Neutral Point 1. 85 ft Static Margin 14. 80% Foam & Balsa Construction Pitch Rate Feedback to Elevator [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 6

Concept Selection Objectives n n March 24, 2005 Selected mission objectives Assigned rankings (out

Concept Selection Objectives n n March 24, 2005 Selected mission objectives Assigned rankings (out of 120 possible points) [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 7

Weighted Objectives n For each design, objectives are ranked either: ¡ n n March

Weighted Objectives n For each design, objectives are ranked either: ¡ n n March 24, 2005 1 - Poor, 3 - Average, 9 - Excellent Each objective score is multiplied by corresponding weighted average Scores for each design concept are totaled [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 8

Pugh’s Method n All other designs’ objectives are compared to design 1 (datum) ¡

Pugh’s Method n All other designs’ objectives are compared to design 1 (datum) ¡ n n March 24, 2005 + (better), - (worse), s (same) Sum of each scoring criteria taken Design strengths and weaknesses determined [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 9

Aerodynamics Overview n n n March 24, 2005 Airfoil Selection Twist Distribution Mathematical Model

Aerodynamics Overview n n n March 24, 2005 Airfoil Selection Twist Distribution Mathematical Model Launch Conditions L/DMAX [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 10

Airfoil Selection: Wing SELIG – WORTMANN COMPARISON Selig 1210: M. S. Selig, J. J.

Airfoil Selection: Wing SELIG – WORTMANN COMPARISON Selig 1210: M. S. Selig, J. J. Guglielmo, A. P. Broeren and P. Giguere, "Summary of Low-Speed Airfoil Data, Volume 1 – Wind Tunnel Data Wortmann FX 63 -137: M. S. Selig, J. F. Donovan and D. B. Fraser, "AIRFOIL AT LOW SPEEDS – Wind Tunnel March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 11

Airfoil Selection: Wing Wortmann FX 63 -137: M. S. Selig, J. F. Donovan and

Airfoil Selection: Wing Wortmann FX 63 -137: M. S. Selig, J. F. Donovan and D. B. Fraser, "AIRFOIL AT LOW SPEEDS – Wind Tunnel March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 12

Airfoil Selection: Canard NACA 0012 March 24, 2005 [ 1 2 3 4 5

Airfoil Selection: Canard NACA 0012 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 13

Airfoil Selection: Vertical Tails n Flat Plate ¡ ¡ March 24, 2005 Non-Lifting Surface

Airfoil Selection: Vertical Tails n Flat Plate ¡ ¡ March 24, 2005 Non-Lifting Surface No Volume Needed Ease of Construction Light Weight [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 14

Wing Twist Distribution n n March 24, 2005 Root: 1 o Tip: -7 o

Wing Twist Distribution n n March 24, 2005 Root: 1 o Tip: -7 o [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 15

Mathematical Model n Prandtl’s Classical Lifting Line Theory ¡ n Elliptical Loading Parasite Drag

Mathematical Model n Prandtl’s Classical Lifting Line Theory ¡ n Elliptical Loading Parasite Drag – Component Buildup Method March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 16

Mathematical Model n March 24, 2005 From Prandtl’s Classical Lifting-Line Theory [ 1 2

Mathematical Model n March 24, 2005 From Prandtl’s Classical Lifting-Line Theory [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 17

Mathematical Model Re=147, 820 March 24, 2005 [ 1 2 3 4 5 6

Mathematical Model Re=147, 820 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 18

Mathematical Model n March 24, 2005 CMo calculated using Roskam Vol. VI and CMα

Mathematical Model n March 24, 2005 CMo calculated using Roskam Vol. VI and CMα calculated from flatearth. m [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 19

Launch Conditions n n αLo = -9 o Vtake-off = 1. 2 Vstall =

Launch Conditions n n αLo = -9 o Vtake-off = 1. 2 Vstall = 18 ft/s Climb Angle = 20 o Angle of Attack = 4. 5 o 20 o -9 o March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 20

L/DMAX n n L/DMAX=10. 75 αL/Dmax=0. 60 o Re=147, 820 March 24, 2005 [

L/DMAX n n L/DMAX=10. 75 αL/Dmax=0. 60 o Re=147, 820 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 21

L/DMAX Operation Point L/DMAX Velocity n Loiter Straight: ¡ VL/Dmax= 21. 97 ft/s Re=147,

L/DMAX Operation Point L/DMAX Velocity n Loiter Straight: ¡ VL/Dmax= 21. 97 ft/s Re=147, 820 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 22

Dynamics & Controls Overview n n n March 24, 2005 Tail Sizing Control Surface

Dynamics & Controls Overview n n n March 24, 2005 Tail Sizing Control Surface Sizing Static Margin Trim Diagram Dihedral Angle Feedback System [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 23

Tail Sizing (Class 1) n Constants ¡ ¡ ¡ n Horizontal tail (canard) ¡

Tail Sizing (Class 1) n Constants ¡ ¡ ¡ n Horizontal tail (canard) ¡ n Area = 1. 432 ft 2 Vertical tail ¡ March 24, 2005 c. HT = 0. 50 c. VT = 0. 05 Cw = 1 ft Sw = 5. 24 ft LHT = 1. 83 ft LVT = 0. 75 ft Area = 0. 915 ft 2 (each) [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 24

Tail Sizing (Class 2) n Vertical Tail ¡ ¡ March 24, 2005 Plot Cnβ

Tail Sizing (Class 2) n Vertical Tail ¡ ¡ March 24, 2005 Plot Cnβ versus Svt = 0. 912 ft 2 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 25

Tail Sizing (Class 2) n Horizontal Tail ¡ ¡ March 24, 2005 Plot Xcg

Tail Sizing (Class 2) n Horizontal Tail ¡ ¡ March 24, 2005 Plot Xcg and Xac versus Sht = 1. 36 ft 2 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 26

Canard & Tail Sizing Class 1 Sizing Class 2 Sizing Canard Area Sht 1.

Canard & Tail Sizing Class 1 Sizing Class 2 Sizing Canard Area Sht 1. 43 ft 2 1. 36 ft 2 Vertical Tail Area Svt (each) 0. 92 ft 2 0. 91 ft 2 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 27

Control Surface Sizing Span (ft) Chord (ft) Area (ft 2) Aileron (each) Elevator 1.

Control Surface Sizing Span (ft) Chord (ft) Area (ft 2) Aileron (each) Elevator 1. 40 1. 00 0. 20 0. 33 0. 28 0. 33 Rudder (each) 0. 75 0. 58 0. 44 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 28

Desired Static Margin n Static Margin (Raymer) ¡ ¡ ¡ n March 24, 2005

Desired Static Margin n Static Margin (Raymer) ¡ ¡ ¡ n March 24, 2005 Typical Fighter Jet: 0 -5% Typical Transport Aircraft = 5 -10% Model aircraft usually more stable Goal: Static Margin = 15% [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 29

Actual Static Margin n March 24, 2005 Xcg = 1. 70 ft Xnp =

Actual Static Margin n March 24, 2005 Xcg = 1. 70 ft Xnp = 1. 85 ft Static Margin = 14. 80% [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 30

Trim Diagram CL Max Trimmed Maximum CL (xref = xcg) α CL Max α

Trim Diagram CL Max Trimmed Maximum CL (xref = xcg) α CL Max α = 0 o March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 31

Dihedral Angle n n n March 24, 2005 Outer Panel Dihedral Wing: 4 deg

Dihedral Angle n n n March 24, 2005 Outer Panel Dihedral Wing: 4 deg outer panel dihedral, B=4 deg and x at 0. 9 ft Canard: -4 deg outer panel dihedral, B=4 deg and x at 0. 08 ft [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 32

Dihedral Angle n EVD of the wing and canard: n Wing EVD: n Canard

Dihedral Angle n EVD of the wing and canard: n Wing EVD: n Canard EVD: March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 33

Loop Closure Description n n March 24, 2005 Pitch Rate feedback to the Elevator

Loop Closure Description n n March 24, 2005 Pitch Rate feedback to the Elevator Objective: Establish longitudinal stability by using pitch rate feedback by varying damping ratio of the short period mode from 0. 83 to 0. 99. [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 34

Block Diagram Pilot Input March 24, 2005 Elevator Servo _ + He(s) Aircraft e(s)

Block Diagram Pilot Input March 24, 2005 Elevator Servo _ + He(s) Aircraft e(s) q(s)/ e(s) K H (s) Feedback Gain Pitch Rate Gyro q(s) [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 35

Aircraft TF / Natural Frequency and Damping Ratio n Aircraft Transfer Function (Flat Earth

Aircraft TF / Natural Frequency and Damping Ratio n Aircraft Transfer Function (Flat Earth Predator) n Undamped Natural Frequency (Short Period) n Damping Ratio (Short Period) March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 36

Gain Calculation, k n Gain Calculation: - Flat Earth Predator - SISOTOOL - Root

Gain Calculation, k n Gain Calculation: - Flat Earth Predator - SISOTOOL - Root Locus Plot For k = 0 March 24, 2005 k = 0. 0857 For k = 0. 0857 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 37

Root Locus March 24, 2005 [ 1 2 3 4 5 6 7 8

Root Locus March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 38

Root Locus March 24, 2005 [ 1 2 3 4 5 6 7 8

Root Locus March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 39

Gyro and Servo Selection n Futaba GYA 350 gyro ¡ ¡ n JR S

Gyro and Servo Selection n Futaba GYA 350 gyro ¡ ¡ n JR S 241 sub micro servos ¡ ¡ March 24, 2005 Weight: 0. 92 ounces Remote gain function Weight: 0. 32 ounces Torque: 17 oz/in [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 40

Structures Overview n n n n March 24, 2005 Material Properties Structures Landing Gear

Structures Overview n n n n March 24, 2005 Material Properties Structures Landing Gear Center of Gravity Weight and Cost Estimation V-n Diagram Wing Loading Analysis [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 41

Material Properties Density (lbf/ft 3) Young’s Modulus (ksi) Yield Stress (psi) Balsa 11 625

Material Properties Density (lbf/ft 3) Young’s Modulus (ksi) Yield Stress (psi) Balsa 11 625 1725 Spruce 34 1500 8600 EPS Foam 1. 5 320 -360 72. 5 EPP Foam 1. 3 1000 4000 Epoxy 0. 0625 lb/ft 2 500 14500 Ultrakote 0. 0156 lb/ft 2 N/A Values from Fall ’ 04 AAE 451 projects and http: //www. matweb. com March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 42

Structural Geometry n Primarily EPP Foam March 24, 2005 n Balsa fuselage structures [

Structural Geometry n Primarily EPP Foam March 24, 2005 n Balsa fuselage structures [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 43

Wing – Fuselage Attachment March 24, 2005 [ 1 2 3 4 5 6

Wing – Fuselage Attachment March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 44

Fuselage Structure n Formers ¡ ¡ Outer Fuselage (each): Three - 1” radius Main

Fuselage Structure n Formers ¡ ¡ Outer Fuselage (each): Three - 1” radius Main Fuselage: Four - 2” radius Stringers ¡ ¡ March 24, 2005 Outer Fuselage (each): Seven – 1/8” x 36” One – 3/8” x 1/2” x 36” (for landing gear mounts) Main Fuselage: Eight – 1/4” x 20” [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 45

Tail Structure n Flat Plate ¡ ¡ ¡ March 24, 2005 Non-Lifting Surface No

Tail Structure n Flat Plate ¡ ¡ ¡ March 24, 2005 Non-Lifting Surface No Volume Needed Ease of Construction 1/8” Balsa – Lightweight EPP Foam Rudder [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 46

Landing Gear n Wire mounting ¡ ¡ n n March 24, 2005 Rigid Lightweight

Landing Gear n Wire mounting ¡ ¡ n n March 24, 2005 Rigid Lightweight Inexpensive Easy to construct Interchangeable Smooth takeoff and landing on Astro. Turf® Pictures courtesy of http: //www. dubro. com [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 47

Gear Configuration n Location ¡ ¡ n Front gear by canard Back gear by

Gear Configuration n Location ¡ ¡ n Front gear by canard Back gear by wing Configuration ¡ ¡ Wire strut attached to stringer in outer fuselage with mounting bracket Interchangeable with wheels, skis, and floats attached to mounting blocks Fuselage Attachment Wheel/Ski/Float Attachment Pictures courtesy of http: //www. dubro. com March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 48

Weight Estimation March 24, 2005 [ 1 2 3 4 5 6 7 8

Weight Estimation March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 49

Cost Estimation March 24, 2005 [ 1 2 3 4 5 6 7 8

Cost Estimation March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 50

V-n Diagram n Level Flight n Turning Flight n Max Load Factor n Vdive

V-n Diagram n Level Flight n Turning Flight n Max Load Factor n Vdive ~ 50% higher than Vcruise nmax=2. 7778 -g @ Vloiter = 25 ft/sec March 24, 2005 Typical limit load factors for general aviation ( npositive = 3. 0 -g, nnegative = -1. 5 -g) from Raymer, Daniel P. , Aircraft Design: A Conceptual Approach p. 407 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 51

Wing Loading Analysis n Analysis ¡ ¡ ¡ March 24, 2005 Load Distribution and

Wing Loading Analysis n Analysis ¡ ¡ ¡ March 24, 2005 Load Distribution and Maximum Wing Loading Maximum Wing Root Bending Moment Maximum Torsional Moment Maximum Wing Tip Deflection Maximum Bending Stress [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 52

Bending n Worst case simplification ¡ ¡ ¡ March 24, 2005 Cantilevered beam Negligible

Bending n Worst case simplification ¡ ¡ ¡ March 24, 2005 Cantilevered beam Negligible weight, outer fuselage mass/support Elliptical load distribution [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 53

Twisting n March 24, 2005 Moment due to lift found from moment coefficient [

Twisting n March 24, 2005 Moment due to lift found from moment coefficient [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 54

Constraints n Twisting: less than one degree of twist n Bending: bending stress less

Constraints n Twisting: less than one degree of twist n Bending: bending stress less than EPP foam yield stress (w/ safety factor of 2) March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 55

Analysis n Maximum wing load: ¡ n Maximum bending moment (at root): ¡ n

Analysis n Maximum wing load: ¡ n Maximum bending moment (at root): ¡ n 3. 623 ft-lbs Maximum torsional moment (from Cm): ¡ March 24, 2005 1. 97 lbs of lift, elliptical loading, load factor of 2. 77 yields 5. 45 lbs 0. 194 ft-lbs [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 56

Results n Maximum wing stress: 361. 80 psi n Maximum tip deflection: 0. 16

Results n Maximum wing stress: 361. 80 psi n Maximum tip deflection: 0. 16 in. n Maximum rotation: 0. 13 degrees March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 57

Moments and Products of Inertia n n Calculated from CAD Model Multiply by material

Moments and Products of Inertia n n Calculated from CAD Model Multiply by material density to determine Mass MOI n Foam Components: n Balsa Components: n Volume = 1048. 1777 (+/- 0. 00012) cubic inches n Volume = 86. 51099 (+/- 0. 00014) cubic inches n Volume Centroid = 2. 468645, 1. 1 e-005, 0. 7137613 (+/- 3. 5 e 006, 2. 7 e-006, 2. 4 e-006) n Volume Centroid = 4. 025129, 2 e-007, 1. 06559 (+/- 8. 6 e-006, 2. 2 e 006, 1. 2 e-005) n Volume Moments: n n n n Volume Moments of Inertia about World Coordinate Axes Ix: 222524. 954 (+/- 0. 0066) Iy: 98029. 872 (+/- 0. 043) Iz: 317314. 68 (+/- 0. 042) Volume Moments of Inertia about Centroid Coordinate Axes Ix: 221990. 954 (+/- 0. 017) Iy: 91108. 06 (+/- 0. 11) Iz: 310926. 87 (+/- 0. 097) March 24, 2005 n n n n Volume Moments of Inertia about World Coordinate Axes Ix: 3479. 97 (+/- 0. 0035) Iy: 9483. 726 (+/- 0. 014) Iz: 11292. 75 (+/- 0. 012) Volume Moments of Inertia about Centroid Coordinate Axes Ix: 3381. 738 (+/- 0. 011) Iy: 7983. 872 (+/- 0. 045) Iz: 9891. 13 (+/- 0. 035) [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 58

Propulsion Overview n n n March 24, 2005 Propeller Selection Component Trade Study Motor

Propulsion Overview n n n March 24, 2005 Propeller Selection Component Trade Study Motor & Battery Selection [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 59

Prandtl & Goldstein March 24, 2005 [ 1 2 3 4 5 6 7

Prandtl & Goldstein March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 60

Propeller Efficiency and Advance Ratio n March 24, 2005 Operation Range ¡ J =

Propeller Efficiency and Advance Ratio n March 24, 2005 Operation Range ¡ J = 0. 35 - 0. 45 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 61

Thrust Coefficient and Advance Ratio March 24, 2005 [ 1 2 3 4 5

Thrust Coefficient and Advance Ratio March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 62

Propeller Efficiency and Advance Ratio March 24, 2005 [ 1 2 3 4 5

Propeller Efficiency and Advance Ratio March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 63

Propeller Selection March 24, 2005 [ 1 2 3 4 5 6 7 8

Propeller Selection March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 64

Component Trade Study www. hobby-lobby. com www. balsapr. com • Graupner Speed 500 60%

Component Trade Study www. hobby-lobby. com www. balsapr. com • Graupner Speed 500 60% too powerful, unreliable data • Each “Tier” represents a battery / motor combination • More selection with Li & Brushless Our Aircraft • Connectors for brushed motors and Li batteries are not compatible. It would not be wise to have a Li & brushed combination. • Our Aircraft needs to weigh less than 32 oz March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 65

Thrust, Power, and Endurance “Sedate” Mission 15 min Airspeed “Trainer” Mission 23 min Airspeed

Thrust, Power, and Endurance “Sedate” Mission 15 min Airspeed “Trainer” Mission 23 min Airspeed Amps March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 66

Motor & Battery Selection Prop 2 Code Components • Calculates near 900 m. Ah

Motor & Battery Selection Prop 2 Code Components • Calculates near 900 m. Ah necessary to fly mission • Fails to include component energy requirements • Components need approximately 150 m. Ah across our mission • 1050 m. Ah battery necessary • Kokam 1200 m. Ah battery chosen on grounds of weight & preferred vendors March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 67

Unique Aspects of the Design n n n March 24, 2005 Twin Boom Design

Unique Aspects of the Design n n n March 24, 2005 Twin Boom Design EPP Foam Robust Interchangeable Landing Gear Brushless Motor 3 -Bladed Prop Alternative [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 68

Remaining Design Problems n n n March 24, 2005 Updating SURFCAM Possible Wing Area

Remaining Design Problems n n n March 24, 2005 Updating SURFCAM Possible Wing Area Updates Landing Gear Position [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 69

Constraint Diagram Revisited n Weight: ¡ n Wing Area ¡ n 2. 06 Lbf

Constraint Diagram Revisited n Weight: ¡ n Wing Area ¡ n 2. 06 Lbf 5. 30 ft 2 Power: ¡ 0. 06 hp Takeoff Desired Design Point Current Design Point n Wing Loading: ¡ n 0. 39 lbf/ft 2 Power Loading: ¡ 34. 33 lbf/hp Design Space March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 70

Summary n n n n n March 24, 2005 Walk Around Aircraft 3 -View

Summary n n n n n March 24, 2005 Walk Around Aircraft 3 -View Constraint Diagram Physical Properties Aerodynamics Dynamics & Controls Structures, Weights, & Landing Gear Propulsion Unique Aspects of the Design Constraint Diagram Revisited [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 71

Questions? March 24, 2005 [ 1 2 3 4 5 6 7 8 9

Questions? March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 72

Appendix March 24, 2005 [ 1 2 3 4 5 6 7 8 9

Appendix March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 73

Turning Conditions March 24, 2005 [ 1 2 3 4 5 6 7 8

Turning Conditions March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 74

L/D Mathematical Model * Raymer, Daniel P. , Aircraft Design: A Conceptual Approach p.

L/D Mathematical Model * Raymer, Daniel P. , Aircraft Design: A Conceptual Approach p. 493 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 75

L/DMAX Velocity n Loiter Straight: ¡ n VL/Dmax= 21. 97 ft/s Loiter Turn: ¡

L/DMAX Velocity n Loiter Straight: ¡ n VL/Dmax= 21. 97 ft/s Loiter Turn: ¡ VL/Dmax= 23. 12 ft/s Re=147, 820 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 76

Effect of Control Surface Deflection: Lift Roskam, Jan, Airplane Design Part. VI: Prelimenary Calculation

Effect of Control Surface Deflection: Lift Roskam, Jan, Airplane Design Part. VI: Prelimenary Calculation of Aerodynamic, Thrust, and Power Characteristics, 2000 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 77

Effect of Control Surface Deflection: Pitching Moment Roskam, Jan, Airplane Design Part. VI: Prelimenary

Effect of Control Surface Deflection: Pitching Moment Roskam, Jan, Airplane Design Part. VI: Prelimenary Calculation of Aerodynamic, Thrust, and Power Characteristics, 2000 March 24, 2005 [ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 ] [ 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 ] 78