CPE 332 Computer Engineering Mathematics II Week 7

  • Slides: 59
Download presentation
CPE 332 Computer Engineering Mathematics II Week 7 Part II, Chapter 6 Queuing Theory

CPE 332 Computer Engineering Mathematics II Week 7 Part II, Chapter 6 Queuing Theory

Today Topics • • • Birth and Death Process Unlimited Server N Servers Single

Today Topics • • • Birth and Death Process Unlimited Server N Servers Single Server, M/M/1 Kendal Notation Applications

Queuing System Departure Rate = Arrival Rate = Customer System Customer

Queuing System Departure Rate = Arrival Rate = Customer System Customer

Queuing System Birth Rate Death Rate Arrival Rate = Departure Rate = Customer System

Queuing System Birth Rate Death Rate Arrival Rate = Departure Rate = Customer System Customer

Queuing System Birth Rate Death Rate Arrival Rate = Departure Rate = Customer System

Queuing System Birth Rate Death Rate Arrival Rate = Departure Rate = Customer System Customer

Queuing System Birth Rate < Departure Rate = Arrival Rate = Customer Death Rate

Queuing System Birth Rate < Departure Rate = Arrival Rate = Customer Death Rate System Customer

Queuing System Case 2: Limited Server; No Queue < Departure Rate = Arrival Rate

Queuing System Case 2: Limited Server; No Queue < Departure Rate = Arrival Rate = System Customer 1. 2. 3. 4. 5. Customer สมมตวา Customer แตละคนทเขามาเปน Poisson และไดรบการ Service จ เวลาทใชในการ Service เปน Random สมมตวาเปน Exponential ดวยเวลาเฉ ระบบสามารถรบ Customer ได N ถาทก Server เตม จะรบ Customer ใหมไมได ระบบนเรยก M/M/N/N แสดงไดดวย Simple Markov Model State Probability จะมการกระจายแบบ First Erlang (Erlang B) Distribution 0 1 2 i j N

Queuing System Arrival Rate = Customer Service R. = Queuing System S Customer

Queuing System Arrival Rate = Customer Service R. = Queuing System S Customer

Queuing System Special Case: M/M/1 Arrival Rate = Service R. = Customer 0 Queue

Queuing System Special Case: M/M/1 Arrival Rate = Service R. = Customer 0 Queue 1 2 S N N+1 Customer

Queuing System Arrival Rate = Customer Service R. = FIFO Queue S Customer

Queuing System Arrival Rate = Customer Service R. = FIFO Queue S Customer

Queuing System M/M/1 Queuing System Service Rate = =1/Ts Arrival Rate = Customer S

Queuing System M/M/1 Queuing System Service Rate = =1/Ts Arrival Rate = Customer S Steady-State probability is not change Customer

M/M/1 =1/Ts S Arrival = Poisson, Inter Arrival = Exponential, 1/ Service Rate, Service

M/M/1 =1/Ts S Arrival = Poisson, Inter Arrival = Exponential, 1/ Service Rate, Service Time, Ts (1/ ) = Exponential Queue = FIFO 1 Server

Queuing Model(1 Server); M/M/1 Queue = 0, No Delay Queue = Delay 0 Server

Queuing Model(1 Server); M/M/1 Queue = 0, No Delay Queue = Delay 0 Server วาง arrival rate 1 N+2 X Server Busy 1/Ts = service rate For each server

การทำงานของ M/M/1 No Q Delay Queue Empty Delay Customer Wait in Q Severe Delay

การทำงานของ M/M/1 No Q Delay Queue Empty Delay Customer Wait in Q Severe Delay Queue Overflow (Full) Congestion Packet Lost

เปรยบเทยบ Queuing Model (N Server); M/M/N Queue = 0, No Delay 0 1 Server

เปรยบเทยบ Queuing Model (N Server); M/M/N Queue = 0, No Delay 0 1 Server วาง i i Server Busy 1 Server Busy A/h=arrival rate j Queue = Delay N N+1 N+2 X N Server Busy 1/h = service rate For each server Maximum Service Rate = N/h Service Rate at State k = k/h

M/M/N No Delay Queue Empty Delay Customer Wait in Q Severe Delay Queue Overflow

M/M/N No Delay Queue Empty Delay Customer Wait in Q Severe Delay Queue Overflow (Full) Congestion

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Network Model (M/M/1(

Kendal Notation

Kendal Notation

Kendal Notation

Kendal Notation

Kendal Notation

Kendal Notation

Queuing in Communication NW and M/M/1 Arrival Rate Service Rate = 1/Service Time

Queuing in Communication NW and M/M/1 Arrival Rate Service Rate = 1/Service Time

Example • Router ������ Packet ������ 8 pps – ����� Packet ������� Exponential ���������

Example • Router ������ Packet ������ 8 pps – ����� Packet ������� Exponential ��������� 500 Octet – Link ������� 64 kbps • 1. Arrival Rate, = 8 pps • 2. �������� Packet = 4000 bit • 3. ���� Link = 64 k ������� Service Time, Ts ���� Packet = 4000/64 k = 1/16 • 4. Service Rate( ) = 16 pps • 5. Server Utilization = 8/16 =0. 5 = 50%

Utilization • Utilization �������� Server �� Busy ������� Probability ��� Queue ������ – Probability

Utilization • Utilization �������� Server �� Busy ������� Probability ��� Queue ������ – Probability ��� Q ���� • �� Network ������ Probability ��� Output Link �� Busy ����

Service Time • ���� Service Time ������ Service Rate ���� • ����� Service Time

Service Time • ���� Service Time ������ Service Rate ���� • ����� Service Time ���� Random Variable �������� Exponential ������� Probability ��� Service Time ������� T ������

Queue Distribution • ������ Customer (State Probability) ��������� Probability ���� k Packet ����� •

Queue Distribution • ������ Customer (State Probability) ��������� Probability ���� k Packet ����� • ������ p 0 ��� Probability ������ • �������� Customer ������� State Probability ������ Geometric Distribution

Queue Distribution • �������� Customer ������� State Probability ������ Geometric Distribution • ������ Geometric

Queue Distribution • �������� Customer ������� State Probability ������ Geometric Distribution • ������ Geometric Distribution ����� Customer �������� Packet ������

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 1

M/M/1 Example 2

M/M/1 Example 2

M/M/1 Example 2

M/M/1 Example 2

M/M/1 Example 3

M/M/1 Example 3

M/M/1 Example 3

M/M/1 Example 3

M/M/1 Example 3

M/M/1 Example 3

MT Topics: 6 ขอ 6 บท • 1. Vector, Direction Cosine, Dot/Cross Product and

MT Topics: 6 ขอ 6 บท • 1. Vector, Direction Cosine, Dot/Cross Product and Application in Geometry • 2. Matrix Determinant, Inverse • 3. Eigenvalue, Eigenvector, Diagonalization • 4. Conditional Probability, PDF and Expectation • 5. Auto/Cross Correlation, Markov Chain, Global/Detailed Balance Equation • 6. M/M/1 Queuing System