Course 5 Water Demand Measures Teacher Saroj Sharma

  • Slides: 40
Download presentation
Course 5 Water Demand Measures Teacher Saroj Sharma 1 s. sharma@unesco-ihe. org

Course 5 Water Demand Measures Teacher Saroj Sharma 1 s. sharma@unesco-ihe. org

About Saroj Sharma Saroj Kumar Sharma graduated in Civil Engineering with distinction in 1988

About Saroj Sharma Saroj Kumar Sharma graduated in Civil Engineering with distinction in 1988 (M. R. Engineering College, University of Rajasthan, India), completed his MSc in Sanitary Engineering with distinction in 1997 (IHE Delft, The Netherlands) and Ph. D in Groundwater Treatment in 2001 (Wageningen University and IHE Delft, The Netherlands). He is specialized in water supply engineering - water quality, treatment and distribution. He has 19 years of professional and academic experience in planning, design, implementation, and operation and maintenance of urban, semi-urban and community-based rural water supply projects. He has worked with several government agencies, international consultants and donors (UNICEF, WHO, ADB, WB) in various water supply projects in different parts of the world. His teaching and research interests are in the field of physicochemical treatment processes (filtration and adsorption based processes), natural treatment systems (bank filtration and soil aquifer treatment), water transport and distribution (water loss management, urban water demand management, corrosion of water pipes) and decentralized water supply systems for small towns and urban poor areas. http: //www. unesco-ihe. org/iu/staffmember/roj 2

Contents § Introduction § Urban water demand management measures § Case studies 3

Contents § Introduction § Urban water demand management measures § Case studies 3

Part A INTRODUCTION 4

Part A INTRODUCTION 4

Traditional Water Supply Management Traditional supply driven water management - Water needs are “requirements”

Traditional Water Supply Management Traditional supply driven water management - Water needs are “requirements” that must be met and not the “demands” that are changeable. - New facilities and structures are developed using available sources to meet perceived “increasing” water needs. Traditional approach has led to over-use of the resources, over-capitalization, pollution and other problems of varying severity. Old paradigm of designing water supply with little attention to demand determinants, pricing structures and financial policies is not sustainable. 5

From water supply management (WSM) to water demand management (WDM) WDM approach places water

From water supply management (WSM) to water demand management (WDM) WDM approach places water demands themselves, not structural solutions, at the centre of concern. WDM recommends the development of large, capital intensive structures only after other possible options for lowering or mitigating the proposed demands have been fully analyzed. WDM and conservation represent the cheapest form of easily available water. Particularly in the areas where additional demands are being placed on water resources which are already stretched to their limit. 6

What is Water Demand Management? Water demand management (WDM) refers to any socially beneficial

What is Water Demand Management? Water demand management (WDM) refers to any socially beneficial action that reduces or modifies average or peak water withdrawals or consumption consistent with protection or enhancement of water quality. WDM can be defined as a strategy to improve efficiency and sustainable use of water resources taking into account economic, social and environmental considerations. WDM corresponds to use of price, quantitative restrictions and other devices to limit the demand of water. 7

Benefits of WDM Reduces water demands (30% - 50%) with no deterioration in life

Benefits of WDM Reduces water demands (30% - 50%) with no deterioration in life style or service level. Significantly reduces capital requirements for expansion of water supply and lowers operating costs (particularly chemicals and energy) Reduces generation of pollutants, and therefore the requirements for new or expanded wastewater treatment systems. Facilitates expansion of the coverage of available fund Enhances the development and adoption of new technologies. Leads to financially sustainable water systems 8

Part B WATER DEMAND MEASURES 9

Part B WATER DEMAND MEASURES 9

Water Demand Management Measures WDM relies upon a range of measures (tools and techniques)

Water Demand Management Measures WDM relies upon a range of measures (tools and techniques) which can be divided into Economic Socio-political, and Structural and operational 10

Economic Measures Economic techniques depend on Incentives such as rebates, tax credits and Disincentives

Economic Measures Economic techniques depend on Incentives such as rebates, tax credits and Disincentives such as real cost, penalties, fines Example: Realistic Water Pricing A direct means of controlling water demand generating revenues to cover costs Should be complementary to other measures of water demand management 11

Socio-political Measures § Policies and Laws § Economic policies, government regulations, standards on appliance

Socio-political Measures § Policies and Laws § Economic policies, government regulations, standards on appliance redesign and marketing: − policy to promote water saving devices − encouraging water savings in industries § Effective public/stakeholder education and awareness measures § Wise use of water; direct restrictions on use 12

Structural and Operational Measures Structural and operational measures are used to achieve better control

Structural and Operational Measures Structural and operational measures are used to achieve better control over water demand. - metering, retrofitting, controlling flow (rationing) and recycling - reduction of UFW, leakage detection and repair - use of water efficient devices - water use restrictions during periods of water shortages 13

Approaches for Water Demand Management Increase system efficiency Increase end use efficiency Promoting distributed

Approaches for Water Demand Management Increase system efficiency Increase end use efficiency Promoting distributed sources of supply Substitute resource use Improve the market on resource usage 14

Demand Management Measures § Increase system efficiency § No change in usage, but change

Demand Management Measures § Increase system efficiency § No change in usage, but change in system operation § Leak detection and repair, pressure reduction § Increase end use efficiency § Less resource use by consumers by using water advertising, education and use of water efficient devices (low volume flush, shower heads, dish washer, washing machine etc) § More efficient watering of public open spaces § Water efficiency in the planning, design and construction of homes and buildings 15

Demand Management Measures § Promoting distributed sources of supply § Provide service via local

Demand Management Measures § Promoting distributed sources of supply § Provide service via local resource not being used § encourage rainwater use and grey-water reuse § Substitute resource use § Provide same service without resource use § Waterless sanitation, low water- use garden plants and shrubs, plants adapted to local rain fall § Improve the market on resource usage § inform consumers about full cost of resource § full cost pricing, universal metering, information on impact of excessive water use 16

Reduction and Control of Unaccountedfor Water

Reduction and Control of Unaccountedfor Water

Reduction and Control of UFW Substantial savings can be achieved and requirement of extension

Reduction and Control of UFW Substantial savings can be achieved and requirement of extension water supply facilities can be avoided or minimised by reducing unaccounted-for water. (specifically leakage detection and control) By reducing UFW water agency will be in better financial situation and will be stronger position to achieve its financial self-sufficiency and long term sustainability. A low rate of unaccounted-for water is one of the best overall indicators that a water utility is successful. 18

What is Unaccounted-For-Water? Definition Unaccounted-for water (UFW) represents the difference between "net production" (the

What is Unaccounted-For-Water? Definition Unaccounted-for water (UFW) represents the difference between "net production" (the volume of water delivered into a network) and "consumption" (the volume of water that can be accounted for by legitimate consumption, whether metered or not). UFW = “net production” – “legitimate consumption” 19

Non-Revenue Water Non-revenue water (NRW) represents the difference between the volume of water delivered

Non-Revenue Water Non-revenue water (NRW) represents the difference between the volume of water delivered into a network and billed authorized consumption. NRW = “Net production” – “Revenue water” = UFW + water which is accounted for, but no revenue is collected (unbilled authorized consumption). 20

Components of Unaccounted-For Water Unaccounted-for water Physical loss (Real loss) Commercial loss (Apparent loss)

Components of Unaccounted-For Water Unaccounted-for water Physical loss (Real loss) Commercial loss (Apparent loss) Pipe breaks and leaks Metering Errors Storage overflows Water Theft House connection leaks Billing Anomalies 21

Standard Terminologies Source: IWA (2000) 22

Standard Terminologies Source: IWA (2000) 22

Four components of an active real loss management program More efficient leak detection Existing

Four components of an active real loss management program More efficient leak detection Existing real losses Economic Improved response time for leak repair level Unavoidable real losses Improved system maintenance, replacement, rehabilitation Pressure management and level control Source: Thornton (2002)

Four components of an active apparent loss management program Reduction of meter error by

Four components of an active apparent loss management program Reduction of meter error by Testing, Sizing Replacement Existing apparent losses Reduction of theft by Education Legal action Prepay measures Pressure limitation Flow control Economic level Unavoidable apparent losses Reduction of computer error by Auditing Checking Routine analysis Upgrade Reduction of human error Training Standardizing Reporting Auditing Source: Thornton (2002)

Part c CASE STUDIES

Part c CASE STUDIES

Case Study: Singapore (1) Limited water resources, importing water from Malaysia Strong emphasis on

Case Study: Singapore (1) Limited water resources, importing water from Malaysia Strong emphasis on Water Conservation as well as Management of Water Distribution System Water Demand Management Approach Keeping unaccounted-for water low Conservation in customers’ premises Tariffs and use of economic incentives and disincentives 26

Case Study: Singapore (2) Keeping unaccounted-for water low leak detection and repair, mains replacement

Case Study: Singapore (2) Keeping unaccounted-for water low leak detection and repair, mains replacement and rehabilitation, minimising illegal connection Conservation in customers’ premises water saving devices, promoting use of other sources (rain water, sea water), encouraging water reuse, consumer education Tariffs and use of economic incentives and disincentives - rates reviewed periodically, rate structured to encourage conservation only approved pipe and fittings are allowed to be used in water supply system water service works are done by licensed workers only 27

Evolution of UFW in Singapore (1989 -1999) Source: Yepes (1995); PUB Singapore (2001) 28

Evolution of UFW in Singapore (1989 -1999) Source: Yepes (1995); PUB Singapore (2001) 28

Singapore - Volume of Water Sold and Revenues (1994) Source: Yepes (1995) 29

Singapore - Volume of Water Sold and Revenues (1994) Source: Yepes (1995) 29

Case Study: Rous Regional WDM Program New South Wales, Australia – Population 70000 Demand

Case Study: Rous Regional WDM Program New South Wales, Australia – Population 70000 Demand management program included the following Pricing and billing reform Leakage detection and repair Rebates & give-aways for water efficient shower heads Point of sale rebate for front loading washing machines Discounted residential retrofit Free water audit for non-residential customers A water efficient demonstration house and garden Effluent reuse in a new village A school education program 30

Case Study: Brittany, France A major pilot project in 7 cities of Brittany, France

Case Study: Brittany, France A major pilot project in 7 cities of Brittany, France [Brest, Lorient, Pontivy, Quinter, Rennes, Morlaix (St- Martin-des-Champs) and Vannes] (total population – 800, 000) Project activities - Information campaign (users and professionals); - Letters to domestic users; - Tests & installation of various water-saving devices - Investigations of leakage in the public distribution system and in private households. 31

Water Savings in Seven Pilot Cities in Brittany, France Source: Sustainable Water Use in

Water Savings in Seven Pilot Cities in Brittany, France Source: Sustainable Water Use in Europe (EEA 2001) 32

Case Study: Decreasing Network Losses in Zurich, Switzerland Network monitoring and leakage control -

Case Study: Decreasing Network Losses in Zurich, Switzerland Network monitoring and leakage control - Annual inspection of at least 40 % of the network Regular network flushings & hydrant controls - Around 10, 000 hydrants are checked, flushed and repaired biannually. Periodic area-wise network maintenance - Valves, street surface boxes, signs, etc. , are locally inspected, cleaned, made accessible or restored. Periodic pressure surge measurements and stray current measurements - To maintain the up-to-date situation of performance analysis 33

Decreasing Network Losses in Zurich Specific water loss decreased from 0. 57 m 3/h/km

Decreasing Network Losses in Zurich Specific water loss decreased from 0. 57 m 3/h/km in 1985 to 0. 22 m 3/h/km in 1995. Cost of maintenance operation Source: Sustainable Water Use in Europe (EEA 2001) 34

Decreasing Network Losses in Zurich Source: Sustainable Water Use in Europe (EEA 2001) 35

Decreasing Network Losses in Zurich Source: Sustainable Water Use in Europe (EEA 2001) 35

Case study – WDM in Boston, USA In Boston, impending costs of supplying water

Case study – WDM in Boston, USA In Boston, impending costs of supplying water to the city led officials to implement a Long Range Water Supply Program (LRWSP) to cut down on water use. Between 1988 and 1993, LRWSP reduced the average daily demand for water from 1. 2 million to 0. 9 million m 3. The program focused on - detecting and repairing leaks, metering, retrofitting showerheads and toilets with more efficient technologies, protecting water sources from pollution, and building support for the program among city, residents through outreach and education. These reductions eliminated the need to develop new supplies -saving hundreds of millions of dollars--and the water system is operating within its safe yield for the first time in 20 years (40). 36

Reducing water demand in Sydney 364 329 http: //www. sydneywater. com. au/html/AER 2000/html/imp_water/demand_manag. htm

Reducing water demand in Sydney 364 329 http: //www. sydneywater. com. au/html/AER 2000/html/imp_water/demand_manag. htm 37

Water Supply and Demand without Demand Management 38

Water Supply and Demand without Demand Management 38

Bibliography ADB (1997) Second Water Utilities Data Book: Asian and Pacific Region. Edited by

Bibliography ADB (1997) Second Water Utilities Data Book: Asian and Pacific Region. Edited by Mc. Intosh, A. C. and Yniguez, C. E. Asian Development Bank. Baumann, D. D. , Boland, J. J. and Hanemann, W. M. (1998) Urban Water Demand Management and Planning. Mc. Graw-Hill Inc. EEA (2001) Sustainable Water Use in European Environmental Agency. www. eea. eu. int OECD (1999) Household water pricing in OECD Countries. Prasifka, D. W. (1994) Water Supply Planning. Krieger Publishing Company, Florida, USA. UK (1994) UK Water Industry: Managing Leakage. Interpreting Measured Night Flows. Yepes, G. (1995) Reduction of Unaccounted-for water: The job can be done! ESD, World Bank. 39

Web Resources on Water Conservation 1. Environmental agency UK – Save water www. environment-agency.

Web Resources on Water Conservation 1. Environmental agency UK – Save water www. environment-agency. gov. uk 2. Conserve Water – Melbourne Water Australia http: //conservewater. melbournewater. com. au 3. Water Efficiency Clearing House - AWWA www. waterwiser. org 4. USEPA – Water Use Efficiency Program www. epa. gov/owm/water-efficiency/ 5. Environment Canada www. ec. gc. ca/water/en/manage/effic/e_weff. htm 6. Public Utilities Board http: //www. pub. gov. sg 7. Water Demand Management Forum http: //www. idrc. ca/waterdemand/ 40