Cours 2 Vent solaire Vent rapide vent lent

  • Slides: 17
Download presentation
Cours 2 Vent solaire

Cours 2 Vent solaire

Vent rapide/ vent lent

Vent rapide/ vent lent

Variations de n et T (et v) Mesures "au dessus" d'un trou coronal près

Variations de n et T (et v) Mesures "au dessus" d'un trou coronal près du minimum solaire, autour de 2 UA v ~ constant

Peu de collisions Nombre de Knudsen=lpm/h

Peu de collisions Nombre de Knudsen=lpm/h

Pourquoi pas un équilibre hydrostatique (isotherme) ? p po R r

Pourquoi pas un équilibre hydrostatique (isotherme) ? p po R r

Fermeture non isotherme ? Autres essais avec fermetures polytropes (g ≠ 1 ) Résultat

Fermeture non isotherme ? Autres essais avec fermetures polytropes (g ≠ 1 ) Résultat très différent: décroissance en loi de puissance au lieu d'exponentielle Valeur à l'infini : Négative si : Pas forcément impossible de confiner de façon statique si g > 1 et Vtho assez petit Pas vrai expérimentalement (le VS existe), mais quand même : Importance cruciale de la fermeture dans le traitement fluide

Les solutions de Parker (avec vent) Equation de Parker = 1 er ordre une

Les solutions de Parker (avec vent) Equation de Parker = 1 er ordre une seule condition limite en général, contradiction entre le bas et le haut sauf solution singulière ( transonique) De plus, solutions autres que transonique = instables

Expansion du vent solaire: Raisonnement sur les particules individuelles En l'absence de collision, chaque

Expansion du vent solaire: Raisonnement sur les particules individuelles En l'absence de collision, chaque particule respecte: Échappement pour Dans la distribution des vo, toujours des particules avec vo > Vlo Toujours de l'échappement, avec déformation de la fonction de distribution

fo(w) si vide à l'infini

fo(w) si vide à l'infini

fo(v) ln(fo) en fonction de v 2 pour une Maxwellienne

fo(v) ln(fo) en fonction de v 2 pour une Maxwellienne

Déformation de f(v) : Vlasov En montant : Vlo 2

Déformation de f(v) : Vlasov En montant : Vlo 2

Moments n u Vth Calculs: avec : … et :

Moments n u Vth Calculs: avec : … et :

Distributions dans le vent solaire Electrons Protons • Pas vraiment Maxwelliennes! • Difficile aussi

Distributions dans le vent solaire Electrons Protons • Pas vraiment Maxwelliennes! • Difficile aussi d'y voir clairement les coupures prévues par le modèle exosphérique. Particules descendantes? Rôle des ondes?

Fermeture effective Les calculs des moments donnent les variations de n, u, p, …

Fermeture effective Les calculs des moments donnent les variations de n, u, p, … avec r : Si fo(v) Maxwellien, diminution de p avec r un peu plus rapide qu'isotherme (T décroît), mais pas énormément pas de gros changement dans les résultats par rapport au modèle fluide isotherme MAIS important : résultat dépendant de la forme de la fonction de distribution Pour le même To fixé en bas, vitesse d'échappement plus grande avec une Lorentzienne ou une fonction k qu'avec une Maxwellienne

Modèle "exosphérique" Vlasov permet de "suivre" les valeurs de f le long des trajectoires

Modèle "exosphérique" Vlasov permet de "suivre" les valeurs de f le long des trajectoires de particules Dans le calcul des trajectoires individuelles (ions et électrons), il faut tenir compte du potentiel gravitationnel et du potentiel électrostatique. Mais le deuxième est inconnu (résultat self-consistent du calcul) Il faut : -Donner fo(v) en bas pour les particules qui montent (v > 0) -Donner f∞(v) en haut pour les particules qui descendent (v < 0) -Imposer ni = ne partout forme de F(r) à la constante F∞ près -Imposer vi = ve (j = 0) fixe le dernier paramètre libre F∞ + Problèmes des particules piégées

Modélisation de l'expansion du vent solaire: conclusion Calculs cinétiques: résultats pas vraiment très différents,

Modélisation de l'expansion du vent solaire: conclusion Calculs cinétiques: résultats pas vraiment très différents, en général, du résultat simpliste de Parker, bien que : • Résultat dépendant pas mal du nombre d'électrons suprathermiques : forme de la fonction fo(ve) en bas : fonctions Lorentziennes et k plus efficaces • Importance de la condition limite en haut (non vide, surtout à distance finie) • Importance cruciale de la modélisation de la région de transition "collisionnel-non collisionnel" Restent aussi quelques problèmes sérieux : • u∞ reste en général insuffisant (sauf exceptions) • Autre cause d'accélération du vent ? (ondes d'Alfven, résonance cyclotronique ionique, etc. . . ). Chauffage de la couronne ? Comment les introduire dans un modèle cinétique?

Un phénomène intéressant dans le vent solaire: les "CIR" • "Corotating interaction region" choc

Un phénomène intéressant dans le vent solaire: les "CIR" • "Corotating interaction region" choc dans un plasma sans collision • cf. TP numérique