Cosmic Microwave Background Acoustic Oscillations Angular Power Spectrum
Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004
Outline… • • Present: angular power Future: Imaging CMB cleaning Primordial non-Gaussianity Reionization Lensing …
The Present CMB: Measuring Angular Power
Before And After The First Light
From COBE to WMAP Courtesy of the NASA/WMAP Science Te
WMAP Maps 0. 49 o 41 GHz, 2 m. K/ Nobs , 33 GHz, 0. 62 o , 3 m. K/ Nobs 23 GHz, 0. 82 o , 6 m. K/ Nobs ' 103 94 GHz, 0. 21 o , 1. 4 m. K/ Nobs 61 GHz, 0. 33 o , 1. 4 m. K/ Nobs Courtesy of the NASA/WMAP Science Te
The CMB Angular Power Spctrum
Throwing Pebbles In The Primordial Pond + + Homogeneity & Isotropy Black Body Spectrum + Courtesy of the NASA/WMAP Science Te
The Sound Of The Early Universe Adiabati c Isocurvat ure
The Window On The Early Universe d T/T/dr/r 0 on all scales
Cosmological Parameters Basic Analysis: h, ns, k ¢ dns/dk, b h 2, m h 2, A, Extension: , m , w. DE, r WMAP, WMAP+ACBAR+CBI+2 d. F+Lyman b h 2 =0. 022§ 0. 001, 0. 0224 § 0. 0009 m h 2 =0. 14§ 0. 01, 0. 135 h=0. 71§ 0. 06, 0. 71 =0. 20§ 0. 07, 0. 17 § 0. 06 ns=0. 91§ 0. 06, 0. 93§ 0. 03 k ¢ dns/dk =. . . , -0. 031 A=0. 9 § 0. 1, 0. 83 +0. 008 -0. 009 +0. 04 -0. 03 +0. 016 +0. 09 0. 017 -0. 08
Extension: WMAP+ACBAR+CBI+HST+SNIa+(H 0>50 km/sec/Mpc): Extension: m =1. 02 § 0. 02 WMAP+ACBAR+CBI+2 d. F: h 2= imi/93. 5 e. V < 0. 0076 ´ m <0. 23 e. V Extension: w. DE WMAP+ACBAR+CBI+HST+SNIa+2 d. F: Extension: r w. DE < -0. 78 WMAP+ACBAR+CBI+2 d. F+infl. cons. rel. : r < -0. 71
Reionisation Cl. T/ exp(-2 ) on l > lrh Cl. T, TE, E, B boosted on l < lrh ' 0. 12
The Future CMB: Imaging Cosmology
CMB Spectrum…
CMB Spectrum… Primordial Density Perts. : non-Gaussian? Reionization: Non-Gaussian Primordial GWs Lensing: Non-Gaussian
CMB Spectrum…
Planck According To Dodelson & Hu 2003
True CMB…
WMAP CMB…
True CMB…
Planck CMB…
True CMB…
CMBpol CMB…
CMB Corrupted
The Future CMB: Foreground Removal
CMB Corrupted
Fast Independent Component Analysis (Fast. ICA) x=As+n, find W such that Wx=s+Wn Fast. ICA main loop: construct W row by row Choose initial w. Update wnew=E[xg(w. Tx)]through w. E(g’(w. Tx)) Compare with w. If not converged go back; if converged start up next row, keeping orthogonality
Fast. ICA on Planck Simulations Maino et al. 2002 IN OUT Planck nominal
Component Separation in Polarisation See Baccigalupi et al. 2003 for results with Planck nominal
Fast. ICA and COBE • Perform Monte Carlo simulations to quantify the effect of noise distribution • Build Criteria to Identify Physical Components in a Heavy Noise Enviroment • Add priors to check quality and consistency of the results • Extract Cosmological Parameters and Foreground Science Maino et al. 2003
Fast. ICA & COBE Blind Maino et al. 2003 Non. Blind
The Future CMB: Imaging Physical Cosmology
Primordial non. Gaussianity Y =YL+f. NL(YL 2 -<YL 2>) The simplest inflationary scenario predicts f. NL' WMAP: -58< f. NL< -134 Planck forecast in progr Liguori et al. 2003
Imaging Reionization… 9. 5 arcminutes Normal Stars in proto-galaxies 20% escape fraction d T/T CMB scattering on moving electorns t compatible with WMAP Salvaterra, Ferrara et al. 2004 in prep.
Dark Energy & CMB: beyond Cl s Giovi et al. 2003, PRD in press, astro-ph/0308118
CMB bispectrum Q (W ) ´ d. T(W )/T alm=s Q (W )Ylm(W )d. W Blm l`m`l``m``=alm al`m` al``m`` Bl l`l``=åm m` m`` (mlm`l`m``l``) alm al`m` al``m`` l l` l``
CMB bispectrum & Structure Formation < Blm l`m`l``m`` >=0 < Blm l`m`l``m`` > 0
CMB bispectrum & Structure Formation Q (W ) =Qlss(W +d. W)+QISW ' Qlss(W)+r. Qlss(W)¢d. W Q ISW(W )=2 s 0 decdr d. Y (r, W )/dh d. W =2 s 0 decdr[(r-rdec)/rdecr]Y(r, W) <Bl l`l``>=[(2 l+1)(2 l``+1)/16 p]1/2(0 l 0 l`0``l``) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ] Cl Q(l``) +Perm. D(z)=[r(zdec)-r(z)]/r(zdec)r(z)3 Q(l)=s 0 dec D(z) F(z) dz F(z)=d. PY/dz|k=l/r(z) PY=(3 Wm 0 /2)2(H 0/ck)4 P(k, z)(1+z)2 P(k, z)=Akn. T(k, z)2 Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002
CMB bispectrum & Structure Formation z r l =2 p /k=r(z 3)/l z 3 r(z 3) l =r(z 2)/l z 2 r(z 2) l =r(z 1)/l r(z 1) l-1 z 1
MB bispectrum line of sight chronolog z r z!1 : super-horizon scales in a flat CDM universe, d. PY/dh =0, d. Q/dz! 0 horizon crossing, Y decaying linearly, d. Q/dz>0 onset of acceleration, change in cosmic equation of state, Y decaying linearly, d. Q/dz>0 Non-linearity, Y grows, d. Q/dz<0 z! 0, l vanishes, d. Q/dz! 0 l-1
MB bispectrum line of sight distributio Giovi et al. 2003, PRD in press, astro-ph/0308118
CMB bispectrum & Dark Energy Quintessence reference models SUGRA RP
CMB bispectrum & Dark Energy Ma et al. 1999, Smith et al. 2003 Giovi et al. 2003, PRD in press, astro-ph/0308118
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
CMB bispectrum & Structure Formation < Blm l`m`l``m`` >=0 < Blm l`m`l``m`` > 0 d. W =2 s 0 decdr[(r-rdec)/rdecr]Y(r, W) Giovi, Liguori et al. 2004, in preparation
Continua… • Component Separation & WMAP… • Impact of CMB bispectrum on Planck Cosmological Parameter Estimation… • Weakly Lensed CMB Templates, Semianalytical… • Weakly Lensed CMB Templates, Numerical… • Weakly Lensed CMB Templates, Polarisation… • Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…
- Slides: 52