Control of Gene Expression Gene Regulation in Prokaryotic

  • Slides: 15
Download presentation
Control of Gene Expression = Gene Regulation in Prokaryotic cell Objectives: n n n

Control of Gene Expression = Gene Regulation in Prokaryotic cell Objectives: n n n To understand the concept of the gene function control. To describe the operon model of prokaryotic gene regulation. To know the genetic sequence involved in the regulation To discuss the evident role of genetic induction & repression. To identify the level of regulation control in eukaryotic cells.

Gene Regulation in Prokaryotes: n Gene regulation is Economic: - E. Coli Contains constitutive

Gene Regulation in Prokaryotes: n Gene regulation is Economic: - E. Coli Contains constitutive genes encode enzymes that are needed (e. g. enzymes of glycolysis). - Activation other genes occurs only under special condition (e. g. absence of glucose & presence of lactose in the media). General levels of Gene Expression Control: 1) Transcriptional level; - Positive control ( activation) - Negative control ( repression) n 2) Translation level; - Increases or decreases the rate of translation ( rate of ribosomal function). 3) Post-translation level; - activation or inhibition the function of the enzymes. ( feedback inhibition mechanism).

Inducible and Repressible Operons: Two Types of Negative Gene Regulation An inducible operon is

Inducible and Repressible Operons: Two Types of Negative Gene Regulation An inducible operon is one that is usually off; a molecule called an inducer inactivates the repressor and turns on transcription n The classic example of an inducible operon is the lac operon, which contains genes coding for enzymes in hydrolysis and metabolism of lactose n A repressible operon is one that is usually on; binding of a repressor to the operator shuts off transcription n The trp operon is a repressible operon n

 • Transcriptional level 1. LACTOSE OPERON = System of Gene Complex LAC OPERON

• Transcriptional level 1. LACTOSE OPERON = System of Gene Complex LAC OPERON Composition: 1) Structural genes: nnnnn- Group of linked genes with related function (Lactose operon contains 3 linked genes). Form unit on bacterial DNA. Coding for group of enzymes with related functions. Their transcription results in single m. RNA. Translation results in separate 3 enzymes, because: Each enzyme is marked by initiation and termination codons on m. RNA. 1) Permease 2) ß- galactosidase 3) Galactoside transacetylase

2) Operator: - DNA –sequence - Switch the transcription on or off - Overlapping

2) Operator: - DNA –sequence - Switch the transcription on or off - Overlapping the promoter 3) Promoter: - Binding site of RNA-polymerase Composition of Operon R repressor gene P promoter O 1 2 operator structural linked genes Carries binding site of repressor protein 3 DNA strand

How works ? The LAC OPERON • Lac operon is inducible system of genes

How works ? The LAC OPERON • Lac operon is inducible system of genes (= An inducible gene is not transcribed unless a specific inducer inactivates its repressor). - becomes active under certain conditions such as absence of glucose & presence of lactose. It works to: Transform lactose into glucose to be used as a source of energy in absence of glucose. -Catabolism is the metabolic pathway. • Repressor protein - Encoded by a repressor gene • Constitutive gene (its always on), so it produces continuously small amount of repressor -protein. • Located upstream from the promoter site. - Repressor protein binds to operator, so it switches the transcription off. - Inactivated by inducer that switches the transcription (operator) on.

1) Binding of repressor to the operator switches operator off. (negative Control) repressor R

1) Binding of repressor to the operator switches operator off. (negative Control) repressor R P O blocked Operator unblocked R P O 1 2 3 NO Transcription of Lac operon genes 2) In presence of lactose, few molecules enter the cell and act as inducer. (positive Control) 1 2 3 Transcription of Lac operon genes Inducer In presence of Lactose and absence of glucose repressor (allolactose) Small molecule formed from lactose RNApolymerase 1 2 Single m. RNA 3 Translation to 3 separate enzymes Inactive repressor - Permease - ß- galactosidase - Galactoside transacetylase Can’t link with operator, so the Lac operon genes expression switches on Glucose Lactose Converts into

Lac operon of E. Coli : Catabolizes the disaccharide lactose into glucose (in presence

Lac operon of E. Coli : Catabolizes the disaccharide lactose into glucose (in presence of lactose & absence of glucose). Permease Transport Lac across the Pl. m. Lactose Few molecules enter the cell & form allolactose - ß- galactosidase - Galactoside transacetylase allolactose (Inducer) - Galactose - Glucose E. Coli plasma membrane

Binding of inducer to repressor Inactivate the repressor by conformational change, It becomes unable

Binding of inducer to repressor Inactivate the repressor by conformational change, It becomes unable to recognize and bind the operator. RNA –polymerase binds to the unblocked promoter Switch the transcription on

Inducer + repressor a) High lactose, high glucose, low c. AMP (inactive operator) due

Inducer + repressor a) High lactose, high glucose, low c. AMP (inactive operator) due to low affinity of promoter to RNA-polymerase inactive repressor R P 1 O 2 3 No transcription RNApolymerase CAP is irrelevant R P O 1 b) High lactose, low glucose, high c. AMP. Activation of promoter by CAPc. AMP complex. 2 3 Transcription of Lac operon On repressor allolactose CAP-c. AMPcomplex helps RNApolymerase to bind promoter so it activates gene expression RNApolymerase 1 In presence of Lactose and absence or low of glucose concentration 2 Single m. RNA Inactive repressor 3

Types of transcriptional control of Lac Operon 1) Negative Control. • - Inhibit the

Types of transcriptional control of Lac Operon 1) Negative Control. • - Inhibit the activity of Lac operon as economical process in presence of glucose. • -The controlling -element is the repressor protein that switches the transcription off. • - in presence of glucose: bacteria produces repressor binds to operator inactive operator turn transcription off. 2) Positive Control. • - activation of lactose catabolism. • - Pomoter of Lac operon has low affinity for RNA-polymerase, although the repressor protein is inactive by allolactose. • - Activation of Lac operon; - Takes place by CAP (catabolic activator protein). - CAP is inactive, becomes active as it combines with c. AMP (co-activator) to form CAP- c. AMP- complex. - c. AMP is regulated by glucose (it is inversely proportional to glucose concentration). glucose c. AMP

trp operon Promoter Genes of operon trp. R DNA Regulatory gene m. RNA 5¢

trp operon Promoter Genes of operon trp. R DNA Regulatory gene m. RNA 5¢ trp. E 3¢ trp. A Operator Start codon Stop codon RNA polymerase m. RNA 5¢ E Protein trp. B trp. C trp. D Inactive repressor D C B A Polypeptides that make up enzymes for tryptophan synthesis Tryptophan absent, repressor inactive, operon on Repressible system Anabolic pathway (synthesis of amino acid tryptophan)

DNA No RNA made m. RNA Active repressor Protein Tryptophan (corepressor) Tryptophan present, repressor

DNA No RNA made m. RNA Active repressor Protein Tryptophan (corepressor) Tryptophan present, repressor active, operon off

Increase co-repressor -rep. complex Switch operator off Turn transcription off Synthesis of enzymes Tryptophan

Increase co-repressor -rep. complex Switch operator off Turn transcription off Synthesis of enzymes Tryptophan level (tryptophan act as co-repressor) Stop enzyme synthesis Switch transcription on Turn operator on Inactive repressor Decrease

Types of Transcriptional Control in Prokaryotes NEGATIVE CONTROL 1) Inducible genes - Represser protein

Types of Transcriptional Control in Prokaryotes NEGATIVE CONTROL 1) Inducible genes - Represser protein alone lactose repressor alone - Represser protein + inducer lactose repressor + allolactose 2) Repressible genes - Repressor protein alone Tryptophan repressor alone - Repressor + corepressor Tryptophan repr. + tryptophan POSITIVE CONTROL - Activator protein alone CAP alone - Activator protein + coactivator CAP + c. AMP Active represser "turns off" regulated gene. Lactose operon not transcribed. Inactive repressor/inducer complex fails to "turn off" regulated gene(s). Lactose operon transcribed. Inactive represser fails to "turn off" regulated gene(s). Typrtophan operon transcribed. Active repressor-corepressor complex "turns off" regulated gene(s). Tryptophan operon not transcribed. Activator alone cannot stimulate transcription of regulated gene(s). Transcription of lactose operon not stimulated Functional activator-coactivator complex stimulates transcription of regulated gene(s). Transcription of lactose operon stimulated.