Continuous Moderator Variables Analysis with Process Hayes Do
Continuous Moderator Variables Analysis with Process Hayes
Do It Yourself • Obtaining the simple slopes yourself is a bit of a pain in the arse. • See http: //core. ecu. edu/psyc/wuenschk/PP/Modera tor. pptx • It is much easier to get them by using Hayes’ Process software.
Process Hayes • Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis, 2 nd ed. New York, NY: Guilford. • Highly recommended for those into mediation, moderation, and moderated mediation (aka conditional process analysis).
Process Hayes • Hayes provides SAS and SPSS macros that make it much easier to conduct these analyses. • Download the macros, data files, etc. • The first step is to identify the model that matches the analysis you wish to do. • Run Process. sas. • If the data are not already in SAS, bring them in.
Process Hayes • Here I shall use Version 3. 4, which is installed on the computers in our labs. • You must run the Process program, within SAS or SPSS, prior to invoking the macro.
Moderate_Process-3. sas %process(data=Zs, y=ar, x=Misanth, w=Ideal, model=1, jn=1, plot=1); Model Summary R R-sq F df 1 df 2 p 0. 3362 0. 1130 6. 3721 3. 0000 150. 0000 0. 0004
Model constant IDEAL MISANTH INT_1 coeff -0. 0202 0. 0672 0. 3028 -0. 1456 se 0. 0773 0. 0777 0. 0733 t -0. 2615 0. 8643 3. 8990 -1. 9861 p 0. 7940 0. 3888 0. 0001 0. 0488 LLCI -0. 1730 -0. 0864 0. 1494 -0. 2905 ULCI 0. 1326 0. 2207 0. 4563 -0. 0007 R-square increase due to interaction(s): R 2 -chng F df 1 df 2 p 0. 0233 3. 9446 1. 0000 150. 0000 0. 0488
The Simple Slopes IDEAL -1. 0328 0. 0934 1. 2196 Effect 0. 4532 0. 2892 0. 1252 se 0. 1091 0. 0779 0. 1177 t 4. 1534 3. 7133 1. 0632 p 0. 0001 0. 0003 0. 2894 LLCI 0. 2376 0. 1353 -0. 1075 Values for “Effect” here are the standardized simple slopes at three levels of standardized Idealism. ULCI 0. 6688 0. 4431 0. 3578
Johnson-Neyman Technique Moderator values(s) defining Johnson-Neyman significance region(s) Value % below % above 0. 7788 77. 2727 22. 7273 Misanthropy is significantly correlated with support for animal rights when the standardized value of idealism is. 7788 or lower.
Predicted Values of zar MISANTH -1. 0703 -0. 1793 1. 0085 IDEAL -1. 0328 0. 0934 1. 2196 AR -0. 5746 -0. 1709 0. 3675 -0. 3235 -0. 0658 0. 2777 -0. 0723 0. 0392 0. 1879
Data for Plot of Simple Slopes data plot; input Misanthropy Idealism Animal_Rights; cards; -1. 0703 -1. 0328 -0. 5746 -0. 1793 -1. 0328 -0. 1709 1. 0085 -1. 0328 0. 3675 -1. 0703 0. 0934 -0. 3235 -0. 1793 0. 0934 -0. 0658 1. 0085 0. 0934 0. 2777 -1. 0703 1. 2196 -0. 0723 -0. 1793 1. 2196 0. 0392 1. 0085 1. 2196 0. 1879
Code for Plot of Simple Slopes proc sgplot; reg x = misanthropy y = Animal_Rights / group = Idealism nomarkers; yaxis label='Standardized Support of Animal Rights'; xaxis label='Standardized Misanthropy'; run;
Plot of Simple Slopes
Table of Conditional Effects Conditional effect of X on Y at values of the moderator (M) IDEAL Effect se t p LLCI ULCI -2. 0275 0. 5981 0. 1686 3. 5483 0. 0005 0. 2650 0. 9312 -1. 0140 0. 4505 0. 1082 4. 1651 0. 0001 0. 2368 0. 6642 0. 7597 0. 1922 0. 0950 2. 0220 0. 0450 0. 0044 0. 3800 0. 7788 0. 1894 0. 0959 1. 9759 0. 0500 0. 0000 0. 3788 1. 0131 0. 1553 0. 1068 1. 4533 0. 1482 -0. 0558 0. 3664 2. 0267 0. 0076 0. 1669 0. 0458 0. 9635 -0. 3221 0. 3374 I have trimmed this table a lot, so it would fit on this slide.
2 Leftmost & 2 Rightmost Cols data plot_JN; input Idealism Effect llci ulci; cards; -2. 0275 0. 5981 0. 2650 0. 9312 -1. 0140 0. 4505 0. 2368 0. 6642 0. 7788 0. 1894 0. 0000 0. 3788 1. 0131 0. 1553 -0. 0558 0. 3664 I have trimmed out most of the rows here to make this fit on this slide.
Code for Johnson-Neyman Plot proc sgplot; series x=Idealism y=ulci/curvelabel = '95% Upper Limit' linesattr=(color=red pattern=Short. Dash); series x=Idealism y=effect/curvelabel = 'Point Estimate' linesattr=(color=blue pattern=Solid); series x=Idealism y=llci/curvelabel = '95% Lower Limit' linesattr=(color=red pattern=Short. Dash); xaxis label = 'Idealism'; yaxis label = 'Conditional effect of misanthropy'; refline 0/axis=y transparency=0. 5; refline. 7788/axis=x transparency=0. 5; run;
Johnson-Neyman Plot
- Slides: 17