Contact Information Mike Skrutskie mfs 4 n Room

  • Slides: 58
Download presentation
Contact Information • Mike Skrutskie – mfs 4 n - • Room 262 –

Contact Information • Mike Skrutskie – mfs 4 n - • Room 262 – Astronomy Building – 924 -4328 Office Hours: • Monday 1: 30 – 2: 30 • Thursday 10: 30 – 12: 00 Room 262 Astronomy (my office) if those don't work contact me for arrangements • Course TA – Kim Sokal - krs 9 tb • Room 267 Astronomy Building • By appointment

How Do You Make Sense of it All?

How Do You Make Sense of it All?

Astronomy: A Search for Organization? Stars. . Galaxies. .

Astronomy: A Search for Organization? Stars. . Galaxies. .

Astronomy: A Search for Organization?

Astronomy: A Search for Organization?

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Galaxies, collections

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Galaxies, collections of billions of stars assembled and bound by gravity, are a primary unit of Universal structure. Any random deep view of the night sky shows a universe peppered with galaxies – each containing hundreds of billions of stars.

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Imagine we

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Imagine we are able to travel to a point billions of light years away and look back toward our galaxy. . . Us?

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Our sun

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Our sun (a star) resides out toward the edge of a thin and flat collection of 100 billion stars – the Milky Way Galaxy A distant galaxy similar to our Milky Way The Stars Near Our Sun Associated WWW Link

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Stars

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Stars Near Our Sun Associated WWW Link

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Sun

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Sun is embedded in the Milky Way (far from the center). We The have a myopic perspective. Milky Way is thin and flat, yet we see a lumpy diffuse band across the sky because of our proximity.

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Sun

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Sun is embedded in the Milky Way (far from the center). We The have a myopic perspective. Milky Way is thin and flat, yet we see a lumpy diffuse band across the sky because of our proximity.

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Sun

Our Galaxy (the Milky Way) in Perspective: How do we fit in? The Sun is embedded in the Milky Way (far from the center). We have a myopic perspective. The Milky Way is thin and flat, yet we see a lumpy diffuse band across the sky because of our proximity. Aitoff Projection

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Infrared light

Our Galaxy (the Milky Way) in Perspective: How do we fit in? Infrared light penetrates dust better than visible light. An infrared view of the Milky Way reveals the real Galaxy.

Astronomy: A Search for Structure? Hierarchical structure in the Universe leads to an extended

Astronomy: A Search for Structure? Hierarchical structure in the Universe leads to an extended mailing address. . . Earth The Solar System (in capital letters) The Milky Way Galaxy The Local Group The Local Supercluster The Universe Implicit in understanding this structure is knowing how far away things actually are. . not an easy task!

Understanding Structure: Divining Depth

Understanding Structure: Divining Depth

Understanding Structure: Divining Depth

Understanding Structure: Divining Depth

Understanding Structure: Divining Depth Still, we are focusing on phenomenology. .

Understanding Structure: Divining Depth Still, we are focusing on phenomenology. .

Astronomy: A Search for Origins!!! Where did all the structure and organization come from?

Astronomy: A Search for Origins!!! Where did all the structure and organization come from? How did it emerge over time? What were the starting conditions? What physical processes were important? We wish to explain, not just observe.

Astronomy: A Search for Origins!!! Where did all the structure and organization come from?

Astronomy: A Search for Origins!!! Where did all the structure and organization come from? How did it emerge over time? What physics/physical processes were important? Hydrogen + Helium + Gravity ⇨ Stars, Galaxies, and Humans given about 14 billion years.

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. It happened 13. 7 billion years ago. » - a number now known to better than 1 percent! Almost immediately gravity begins to form stars and galaxies. Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago.

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” of previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time a system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. It happened 13. 7 billion years ago. a number now known to better than 1 percent! Stars die The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” of previous generations of stars. At the same time a system of planets form from debris left in orbit around the Sun. Stars form Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” of previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time a system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago. Lecture outline: A Brief History of the Universe

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time

A Five-Minute History of the Universe The “Big Bang” brings matter, space and time into existence. a number now known to better than 1 percent! Stars “process” Hydrogen and Helium into heavier elements like Iron, Calcium, and Oxygen. After 9 billion years of cosmic recycling (4. 6 billion years ago) our Sun forms from the “ashes” for previous generations of stars. The early Universe contained only uniformly distributed Hydrogen and Helium. Almost immediately gravity begins to form stars and galaxies. It happened 13. 7 billion years ago. At the same time system of planets form from debris left in orbit around the Sun. Life originates quickly on Earth. but only becomes “complex” ½ billion years ago.

A Single-Year Perspective If this history could be compressed into a single year: The

A Single-Year Perspective If this history could be compressed into a single year: The Universe starts on January 1. . . The Solar System forms in early-September

A Single-Year Perspective If this history could be compressed into a single year: The

A Single-Year Perspective If this history could be compressed into a single year: The Universe starts on January 1. . . The Solar System forms in early-September Life on Earth originates in mid-September – 3. 4 billion year old stromatolite fossils URL - Life becomes complex in early-December 0. 3 billion year old trilobyte

A Single-Year Perspective If this history could be compressed into a single year: The

A Single-Year Perspective If this history could be compressed into a single year: The Universe starts on January 1. . . The Solar System forms in early-September Life originates in mid-September – - Life becomes complex in early-December Dinosaurs roamed the Earth for two weeks between December 10 and December 25 Humanity (intelligence? ) arose at 10 p. m. on December 31 Recorded history began around 11: 59: 45 on December 31

Overcoming Human Biases Location, Wavelength, and Time to name a few Lecture Notes: Human

Overcoming Human Biases Location, Wavelength, and Time to name a few Lecture Notes: Human Biases in Astronomy

Human Biases Time A human lifetime is a blink of the eye relative to

Human Biases Time A human lifetime is a blink of the eye relative to the timescale of cosmic events. • - Going back to that cosmic year, a human lifetime is about 2 onehundredths of a second. Stars and galaxies change incredibly slowly by comparison. Astronomers must reconstruct the workings of the Universe from this “snapshot” view. Lecture Notes: Lookback time

Lecture Notes: Lookback time

Lecture Notes: Lookback time

Human Biases Time A human lifetime is a blink of the eye relative to

Human Biases Time A human lifetime is a blink of the eye relative to the timescale of cosmic events. • - Going back to that cosmic year, a human lifetime is about 2 onehundredths of a second. Stars and galaxies change incredibly slowly by comparison. Astronomers must reconstruct the workings of the Universe from this “snapshot” view. The Astronomer's task is similar to asking an alien anthropologist to reconstruct the intricacies of human relationships and politics from a snapshot of the events happening on Earth at one instant. Lecture Notes: Lookback time

Human Biases Time A human lifetime is a blink of the eye relative to

Human Biases Time A human lifetime is a blink of the eye relative to the timescale of cosmic events. Astronomers must reconstruct the workings of the Universe from this “snapshot” view. This task is similar to reconstructing the intricacies of human relationships and politics from a snapshot of the events happening on Earth at one instant. Astronomers have two powerful tools to address this shortcoming Light travels “slowly”. A stale view of the universe permits Astronomers to look back in time. Lecture Notes: Lookback time

“Lookback” Time Light takes time to get from one place to another. Light travels

“Lookback” Time Light takes time to get from one place to another. Light travels at a speed of 300, 000 km/s The travel time is instantaneous for most everyday experience where distances are small. Travel time becomes important for more distant objects Light takes just over a second to get to the Moon (400, 000 kilometers away). In a year light traverses a distance of a light-year.

“Lookback” Time We get a “stale” view of the Universe, seeing more distant object

“Lookback” Time We get a “stale” view of the Universe, seeing more distant object as they were in the more distant past. – We see the Sun as it was 8. 3 minutes ago because the light took 8. 3 minutes to traverse the distance from the Sun to the Earth (150 million kilometers). For extremely distant objects, billions of light-years, the light takes billions of years to get here, bringing a view that is billions of years out of date.

“Lookback” Time We see the Sun as it was 8. 3 minutes ago because

“Lookback” Time We see the Sun as it was 8. 3 minutes ago because the light took 8. 3 minutes to traverse the distance from the Sun to the Earth (150 million kilometers). For extremely distant objects, billions of light years, the light takes billions of years to get here, bringing a view that is billions of years out of date. We see the distant universe as it was in the distant past.

Human Biases Time A human lifetime is a blink of the eye relative to

Human Biases Time A human lifetime is a blink of the eye relative to the timescale of cosmic events. Astronomers must reconstruct the workings of the Universe from this “snapshot” view. This task is similar to reconstructing the intricacies of human relationships and politics from a snapshot of the events happening on Earth at one instant. Astronomers have two powerful tools to address this shortcoming Light travels “slowly”. A stale view of the universe permits Astronomers to look back in time. Computer simulation can permit scientist to watch events play out over millions or billions of years. Insert the laws of physics and turn the crank. . . Lecture Notes: Lookback time

Simulation Real Some computer animations: Collision between Galaxies Formation of Structure in the Universe

Simulation Real Some computer animations: Collision between Galaxies Formation of Structure in the Universe

Simulation Real Some computer animations: Collision between Galaxies Formation of Structure in the Universe

Simulation Real Some computer animations: Collision between Galaxies Formation of Structure in the Universe Tour the Millenium Simulation

Human Biases Location

Human Biases Location

Human Biases Location

Human Biases Location

Human Biases Location

Human Biases Location

 Location High density of matter compared with intergalactic space. 1019 atoms per cubic

Location High density of matter compared with intergalactic space. 1019 atoms per cubic centimeter in air. 1 atom per cubic “stadium” in intergalactic space. High temperature compared with intergalactic space • Human Biases 300 Kelvins room temperature vs. 3 Kelvins elsewhere. Dominance by elements other than hydrogen and helium.

Human Biases Location

Human Biases Location

Human Biases Wavelength

Human Biases Wavelength

Human Biases Wavelength The universe looks quite different when we look outside the tiny

Human Biases Wavelength The universe looks quite different when we look outside the tiny slice of the spectrum accessible to the human eye.

Human Biases Wavelength

Human Biases Wavelength

Human Biases Comprehending large numbers It's easy to visualize 5, 10, or even 100

Human Biases Comprehending large numbers It's easy to visualize 5, 10, or even 100 things. What's the difference between a million, a billion, or a trillion (from a visualization standpoint)? How do we make large numbers conceptually meaningful?

Human Biases Comprehending large numbers It's easy to visualize 5, 10, or even 100

Human Biases Comprehending large numbers It's easy to visualize 5, 10, or even 100 things. What's the difference between a million, a billion, or a trillion (from a visualization standpoint)? ? ? How do we make large numbers conceptually meaningful? The mass of the Sun is 2, 000, 000, 000 kg Using scientific notation makes the above number manageable, but not necessarily comprehensible. = 2 x 1030 kg

Human Biases Scale models can put these numbers in a relative context.

Human Biases Scale models can put these numbers in a relative context.

Human Biases Scale models can put these numbers in a relative context. NO!

Human Biases Scale models can put these numbers in a relative context. NO!