Constraining Dark Energy with Cluster Strong Lensing Priyamvada

  • Slides: 18
Download presentation
Constraining Dark Energy with Cluster Strong Lensing Priyamvada Natarajan Yale University Collaborators: Eric Jullo

Constraining Dark Energy with Cluster Strong Lensing Priyamvada Natarajan Yale University Collaborators: Eric Jullo (JPL), Jean-Paul Kneib (OAMP), Anson D’Aloiso*(Yale) Marceau Limousin (Toulouse), Johann Richard (DARK), Carlo Schimd (OAMP)

HST’s high resolution • Post COSTAR, Hubble has provided a unique view of multiply

HST’s high resolution • Post COSTAR, Hubble has provided a unique view of multiply imaged galaxies: better identification, fainter images, morphologies Cl 2244 1986 1996 CFHT HST

Einstein radii at multiple source redshifts Ratio of the position of multiple images, depends

Einstein radii at multiple source redshifts Ratio of the position of multiple images, depends on mass distribution and cosmological parameters Allows constraining dark energy out to

How does this work? ISOTHERMAL SPHERE LENS lens at z = z. L; sources

How does this work? ISOTHERMAL SPHERE LENS lens at z = z. L; sources at z. S 1 & z. S 2 Obtained from data Solve for cosmological parameter • EXTENDING TO MORE COMPLICATED MASS PROFILES AND MORE MULTIPLY IMAGED SOURCES…………

Cluster arcs and dark energy: Abell 1689 34 multiply imaged systems, 24 with measured

Cluster arcs and dark energy: Abell 1689 34 multiply imaged systems, 24 with measured redshifts Broadhurst+ 05, Benitez+ 06; Halkola+ 06; Limousin, PN+ 07; Jullo+ 2010

Strong lensing multiple image geometries for an elliptical lens Image plane critical curves Source

Strong lensing multiple image geometries for an elliptical lens Image plane critical curves Source plane caustics

Multiple image families and sensitivity to dark energy For multiple images of the same

Multiple image families and sensitivity to dark energy For multiple images of the same source notation denotes the position of the ith image of family f Taking the ratio of 2 distinct families of multiple images Dependence on the mass distribution Gilmore & PN 08; D’Aloisio & PN 10

Mass profile of Abell 1689

Mass profile of Abell 1689

First results for A 1689 Limousin+ 07

First results for A 1689 Limousin+ 07

Degeneracies….

Degeneracies….

First results for A 1689 Mass model with 3 PIEMD potentials; 58 cluster galaxies

First results for A 1689 Mass model with 3 PIEMD potentials; 58 cluster galaxies Bayesian optimization: 32 constraints, 21 free parameters; RMS = 0. 6 arcsec; 28 multiple images from 12 sources with spec z, flat Universe prior D’Aloisio & PN 09; Jullo & Kneib 09: Jullo+ 10 (Science, August 2010, 329,

Requirements for cluster strong lensing • • Need complement of ground based spectroscopy Mass

Requirements for cluster strong lensing • • Need complement of ground based spectroscopy Mass modeling positional accuracy Need spectroscopic redshifts for all sources (no photo-z’s) Structure along the line of sight behind the lens plane (environments of lenses needs to be modeled Momcheva et al. 06, Oguri, Keeton& Dalal 05) structure behind 0024 perturbations in the positions of multiple images Area under caustic likely to produce multiple images

Contribution of structure behind the lens plane KEY SYSTEMATICS L. O. S. SUBSTRUCTURE IN

Contribution of structure behind the lens plane KEY SYSTEMATICS L. O. S. SUBSTRUCTURE IN LENS PLANE & ALONG L. O. S Scaling Relations (relation between mass & light) Correlated LOS (infalling subclusters, filaments) Uncorrelated LOS (primary contribution to the errors) D’Aloisio & PN 10

BIASES: choice of density profile, bimodality? Not particularly sensitive to the inner slope/outer slope

BIASES: choice of density profile, bimodality? Not particularly sensitive to the inner slope/outer slope of the density profile No bias from choice of profile NFW vs. PIEMD or bi-modality

10 clusters, 20 families! Flat prior, input w = -1; evolving wa Chevallier, Polarski

10 clusters, 20 families! Flat prior, input w = -1; evolving wa Chevallier, Polarski & Linder 01

Current constraints including CSL Combining X-ray clusters, WMAP 5, strong lensing competitive with WMAP

Current constraints including CSL Combining X-ray clusters, WMAP 5, strong lensing competitive with WMAP 5 + SNe + BAO Jullo, Kneib, PN+ 10

The SDSS Giant-Arc Survey & MCT Clusters…. Hennawi+ 07, 08; Oguri+ 09; Gladders+ 10;

The SDSS Giant-Arc Survey & MCT Clusters…. Hennawi+ 07, 08; Oguri+ 09; Gladders+ 10;

Parameter degeneracies wx For each clump: ellipticity, core radius, clump vel disp, Omega m

Parameter degeneracies wx For each clump: ellipticity, core radius, clump vel disp, Omega m