Coherent Xray Imaging Instrument Final Instrument Design Review

  • Slides: 25
Download presentation
Coherent X-ray Imaging Instrument Final Instrument Design Review CXI Photon Controls and Data Systems

Coherent X-ray Imaging Instrument Final Instrument Design Review CXI Photon Controls and Data Systems Gunther Haller LUSI CXI FIDR June 3, 2009 1 1 G. Haller [email protected] stanford. edu

XES Near & Far Hall Hutches and Beamline Layout (not to scale) 230 m

XES Near & Far Hall Hutches and Beamline Layout (not to scale) 230 m AMO SXR MEC LUSI CXI FIDR June 3, 2009 2 2 G. Haller [email protected] stanford. edu

LCLS X-Ray Endstation (XES) Provided Controls Subsystems Following sub-systems are provided to CXI by

LCLS X-Ray Endstation (XES) Provided Controls Subsystems Following sub-systems are provided to CXI by LCLS XES and are thus not described in this review (reviewed separately) Hutch Protection System Machine Protection System User Safeguards (include Oxygen Deficiency Monitoring) Laser Femto-Second Timing System Machine Timing System Networking EPICS Control system Online/Offline Processing System 2 -D Pixel Array Detector LUSI CXI FIDR June 3, 2009 3 3 G. Haller [email protected] stanford. edu

Specification and Interface Control Documents Released Engineering Specification Documents (detailed requirements regarding controls and

Specification and Interface Control Documents Released Engineering Specification Documents (detailed requirements regarding controls and data systems needs of instrument) CXI Controls ESD (SP-391 -001 -13) CXI DAQ ESD (SP-391 -001 -18) Released Interface Control Documents (specify where the interface is, who is responsible for what) XES-LUSI ICD (1. 1. 523) XES CXI Controls ICD (SP-391 -001 -14) Status: all documents are released http: //confluence. slac. stanford. edu/display/PCDS/CXI_XCS-PDR LUSI CXI FIDR June 3, 2009 4 4 G. Haller [email protected] stanford. edu

Reviews CXI Controls and Data Systems Preliminary Design Review held May 11, 09 Presentations

Reviews CXI Controls and Data Systems Preliminary Design Review held May 11, 09 Presentations are at http: //confluence. slac. stanford. edu/display/PCDS/CXI_XCS-PDR Many controls items are already used in other (earlier) photon sections, XTOD and AMO, both are past the Final Design Review stage and are being assembled. XTOD is in the commissioning stage. In addition XPP will be installed before CXI. LUSI CXI FIDR June 3, 2009 5 5 G. Haller [email protected] stanford. edu

Risks and Procurements No technical, schedule, cost risk items except Usual risk that devices

Risks and Procurements No technical, schedule, cost risk items except Usual risk that devices are changed or added without controls being informed Mitigated by Regular meetings Keep ESD and ICD documents up-to-date No long term lead-time or > $100 k items Components are ordered with sufficient margin LUSI CXI FIDR June 3, 2009 6 6 G. Haller [email protected] stanford. edu

ES&H Hutch Protection Systems provided by LCLS XES, hutch 3 (CXI) is the fourth

ES&H Hutch Protection Systems provided by LCLS XES, hutch 3 (CXI) is the fourth hutch to be operated Same for User Safeguards (Oxygen Deficiency Monitor) Electrical Safety All cables/equipment are rated for their use All equipment will be NRTL listed or inspected and approved under SLAC's Electrical Equipment Inspection Program LUSI CXI FIDR June 3, 2009 7 7 G. Haller [email protected] stanford. edu

CXI Instrument Diagnostics/Common Optics Diagnostics & Wavefront Monitor 1 micron Sample Environment 1 micron

CXI Instrument Diagnostics/Common Optics Diagnostics & Wavefront Monitor 1 micron Sample Environment 1 micron KB Reference Laser * 0. 1 micron KB & Sample Environment, Particle Injector and ITo. F (CD-4) All Early Science except * LUSI CXI FIDR June 3, 2009 8 8 G. Haller [email protected] stanford. edu

Controls Subsystems Vacuum Motion Viewing Power Supplies Racks and Cabling Other items Software: EPICS/Python/Qt

Controls Subsystems Vacuum Motion Viewing Power Supplies Racks and Cabling Other items Software: EPICS/Python/Qt Type of controls Valve Control Vacuum Controls Pop-In Profile Monitor Controls Pop-In Intensity Monitor Controls Intensity-Position Monitor Controls Slit Controls Attenuator Controls Pulse Picker Controls KB Mirror Controls X-Ray Focusing Lense Control Sample Environment Controls Particle Injector Controls Ion To. F Controls Vision Camera Controls Detector Stage Controls Reference Laser Controls DAQ Controls LUSI CXI FIDR June 3, 2009 9 9 G. Haller [email protected] stanford. edu

CXI Components to Control X-Ray Optics KB system Motion Vendor provided, integration with LCLS

CXI Components to Control X-Ray Optics KB system Motion Vendor provided, integration with LCLS Reference Laser Motion Sample Environment Sample Chamber Motion, vacuum, vision Ion To. F HV, DC/pulser, digitizer Instrument Stand Motion Detector Stage Motion, vacuum, thermal Particle Injector Motion, vacuum, digitizer, vision, integration of commercial component Vacuum System Valve and Vacuum Controls LUSI CXI FIDR June 3, 2009 10 10 G. Haller [email protected] stanford. edu

CXI Components to Control con’t Diagnostics and Common Optics Pop-In Profile Monitor Motion, Viewing

CXI Components to Control con’t Diagnostics and Common Optics Pop-In Profile Monitor Motion, Viewing Pop-In Intensity Motion, Digitization Intensity Position Motion, Digitization Slit System Motion Attenuator Motion Pulse-Picker Motion, Viewing X-Ray Focusing Lense Motion CXI specific interface and programming Racks & Cabling Workstations Vision Cameras Beam Line Processor Channel Access Gateway Machine Protection System Configuration Data Acquisition LUSI CXI FIDR June 3, 2009 11 11 G. Haller [email protected] stanford. edu

EPICS/Python/Qt EPICS (Experimental Physics and Industrial Control System): Control software for RT systems Monitor

EPICS/Python/Qt EPICS (Experimental Physics and Industrial Control System): Control software for RT systems Monitor (pull scheme) Alarm Archive Widely used at SLAC and other labs More: http: //www. aps. anl. gov/epics/ Python/Qt is a user interface between the EPICS drivers and records and the user System is used for XTOD and AMO, provided as part of the XES Photon Controls Infrastructure LUSI CXI FIDR June 3, 2009 12 12 G. Haller [email protected] stanford. edu

Example of Python/Qt user interface LUSI CXI FIDR June 3, 2009 13 13 G.

Example of Python/Qt user interface LUSI CXI FIDR June 3, 2009 13 13 G. Haller [email protected] stanford. edu

Example: Vacuum All gauge controllers are MKS 937 A Interface Terminal server – DIGI

Example: Vacuum All gauge controllers are MKS 937 A Interface Terminal server – DIGI TS 16 MEI Automation Direct PLC All ion pump controllers are Gama Vacuum DIGITEL MPC dual All valves are controlled by PLC relay module The out/not-out state of all valves go into the MPS system to prevent damage if a valve closes unexpectedly. LUSI CXI FIDR June 3, 2009 14 14 G. Haller [email protected] stanford. edu

Example: Motion Control System provides support for all motions Motors IMS MDrive Plus 2

Example: Motion Control System provides support for all motions Motors IMS MDrive Plus 2 integrated controller and motor IMS MForce Plus 2 controller for control of in vacuum and other specialized motors Newport motor controllers Others as required Pneumatic motion Solenoid Driver chassis, SLAC 385 -001 LUSI CXI FIDR June 3, 2009 15 15 G. Haller [email protected] stanford. edu

Fast (DAQ) Camera System LUSI CXI FIDR June 3, 2009 16 16 G. Haller

Fast (DAQ) Camera System LUSI CXI FIDR June 3, 2009 16 16 G. Haller [email protected] stanford. edu

Data System Architecture XPP specific Photon Control Data Systems (PCDS) Beam Line Data L

Data System Architecture XPP specific Photon Control Data Systems (PCDS) Beam Line Data L 1: Acquisition (Many) Digitizers + Cameras Timing L 0: Control (One) L 2: Processing (Many) L 3: Data Cache (Many) DAQ system primary features Trigger and readout Process and veto Monitoring Storage Provided to CXI by XES, same system as used for AMO and XPP LUSI CXI FIDR June 3, 2009 17 17 G. Haller [email protected] stanford. edu

CXI 2 D-Detector Control and DAQ Chain Vacuum Groundisolation Fiber Carrier Board Cornell detector/ASIC

CXI 2 D-Detector Control and DAQ Chain Vacuum Groundisolation Fiber Carrier Board Cornell detector/ASIC with SLAC quadrant board ATCA crate with SLAC DAQ Boards S: AC RCE ATCA Module Each Cornell detector has ~36, 000 pixels Controlled and read out using Cornell custom ASIC ~36, 000 front-end amplifier circuits and analog-to-digital converters Initially 16 x 32, 000 -pixel devices, then up to 64 x 32, 000 -pixel devices 4. 6 Gbit/sec average with > 10 Gbit/sec peak LUSI CXI FIDR June 3, 2009 18 18 G. Haller [email protected] stanford. edu

CXI Online Processing Electronics gain correction (in RCE) Response of amplifying electronics is mapped

CXI Online Processing Electronics gain correction (in RCE) Response of amplifying electronics is mapped during calibration Science data images are corrected for channel gain non-uniformity + non-linearity. Dark image correction (in RCE) Dark images accumulated between x-ray pulses Averaged dark image subtracted from each science data image Flat field correction (in RCE) Each science data image is corrected for non-uniform pixel response Event filtering (in RCE or later) Events are associated with beam line data (BLD) via timestamp and vetoed based upon BLD values. Veto action is recorded. Images may be sparsified by predefined regions of interest. LUSI CXI FIDR June 3, 2009 19 19 G. Haller [email protected] stanford. edu

CXI Online Processing con’t Event processing (processing stage) Examples are Sparcification (region of interest)

CXI Online Processing con’t Event processing (processing stage) Examples are Sparcification (region of interest) Locating center Reducing data by binning pixels Mask errant pixels (saturated, negative intensity from dark image subtraction due to e. g. noise, nonfunctioning pixels, edge pixels from moving center) Filling in missing data with centro-symmetric equivalent points Transforming camera geometry due solid angle coverage and dead space between tiles Radial averaging, showing intensity versus scattering angle or momentum transfer Compute 2 D autocorrelation function (single FFT) and store. Essentially at rate of 1 Hz with 4 MB (2 Mpixel x 2 bytes) frames. Peak finding (locate and fit Gaussian intensity peaks). There may be multiple peaks in some cases and the peak finding algorithms should be able to identify up to a few thousand peaks. The CXI instrument will have an Ion Time-of-Flight which will produce data at 120 Hz. The online processing of this data involves data reduction based on thresholding and vetoing based on thresholding or the fitting of peak positions and height. LUSI CXI FIDR June 3, 2009 20 20 G. Haller [email protected] stanford. edu

CXI Monitoring A copy of the data is distributed (multicast) to monitoring nodes on

CXI Monitoring A copy of the data is distributed (multicast) to monitoring nodes on the DAQ subnet. The monitoring nodes will provide displays for experimenters’ viewing: corrected detector images at ≥ 5 Hz histories of veto rates, beam intensity, + other BLD values. Reduced analysis of sampled binned data (versus scan parameter) or other processing tbd Implemented with Qt (C++/Python open source GUI) LUSI CXI FIDR June 3, 2009 21 21 G. Haller [email protected] stanford. edu

Common Diagnostics Readout E. g. intensity, profile monitor, intensity position monitors E. g. Canberra

Common Diagnostics Readout E. g. intensity, profile monitor, intensity position monitors E. g. Canberra PIPS or IRD SXUV large area diodes (single or quad) Amplifier/shaper/ADC for control/calibration/readout Quad-Detector R 2 q 1 q 2 R 1 L FE Target L • Fourdiode design • On-board calibration circuits not shown • Board designed, fabricated, loaded, is in test LUSI CXI FIDR June 3, 2009 22 22 G. Haller [email protected] stanford. edu

WBS for LUSI XPP Controls & Data Systems 1. 6. 4. 1 XPP H

WBS for LUSI XPP Controls & Data Systems 1. 6. 4. 1 XPP H 3 Controls Requirements, Design and Setup 1. 6. 4. 2 XPP H 3 Standard Hutch Controls 1. 6. 4. 3 XPP H 3 Specific Controls LUSI CXI FIDR June 3, 2009 23 23 G. Haller [email protected] stanford. edu

Milestones Controls Dates for Installation in FEH (incremental installation driven by instrument component availability)

Milestones Controls Dates for Installation in FEH (incremental installation driven by instrument component availability) Start: Early Finish “Early Science” Commissioning before LUSI CXI FIDR June 3, 2009 24 24 ~April 2010 ~Nov 2010 ~ May 2011 G. Haller [email protected] stanford. edu

Summary Interface and Requirements documents released Clear what needs to be done No issues,

Summary Interface and Requirements documents released Clear what needs to be done No issues, design meets requirements Design Mature Most items are already used (hardware and software) in XTOD and AMO, plus XPP ahead of CXI Preliminary Design Review completed Most items similar to XTOD and AMO and XPP which already had Final Design Reviews for Controls and Data Systems (XTOD is being installed, AMO will follow in July 09) Team Engineers and technicians from PPA Research Engineering Group, sufficient manpower available for CXI LUSI CXI FIDR June 3, 2009 25 25 G. Haller [email protected] stanford. edu