CO 2 Capture Sequestration Project An Impact Project

  • Slides: 25
Download presentation
CO 2 Capture & Sequestration Project An Impact Project of DST at RGPV Bhopal

CO 2 Capture & Sequestration Project An Impact Project of DST at RGPV Bhopal MODELING & SIMULATION OF CARBON RECYCLING TECHNOLOGY THROUGH CONVERSION OF CO 2 INTO USEFUL MULTIPURPOSE FUEL

1. Project Details: a. Title of the project: “MODELING & SIMULATION OF CARBON RECYCLING

1. Project Details: a. Title of the project: “MODELING & SIMULATION OF CARBON RECYCLING TECHNOLOGY THROUGH CONVERSION OF CO 2 INTO USEFUL MULTIPURPOSE FUEL” b. DST File No. : DST /IS-STAC / CO 2 -SR-31 /07 Dt. 11 -01 -2008 c. PI details Principal Investigator's): Dr. V. K. Sethi, Director- UIT, & Prof. (Energy &Environment Management), RGPV Bhopal d. Date of start : 1 st April 2008 e. Date of completion: 30 th June 2010 F. Total cost of project: 25. 324 Lakhs

Broad area of Research: CO 2 SEQUESTRATION (Under the National Program on Carbon Sequestration

Broad area of Research: CO 2 SEQUESTRATION (Under the National Program on Carbon Sequestration – NPCS of DST) Sub Area – Project Title: Modeling & Simulation of Carbon Recycling Technology Through Conversion of CO 2 Into Multipurpose Fuels. g. Approved Objectives of the Proposal:

Methodology Description of the Pilot Plant: Rated Capacity of the Capture of CO 2

Methodology Description of the Pilot Plant: Rated Capacity of the Capture of CO 2 : 500 kg/ day Source of CO 2: Boiler of capacity 100 kg/hr. steam & Biomass Gasifier of 10 k. We Solvent used for capture of CO 2 : Mono Ethanol Amine (MEA) SOx & NOx Removal: Na H CO 3, Na. OH & Lime. Catalytic Converters / Reduction Unit - For Methane. . Input CO and H 2, Catalyst “R - 01 * - For Hydrogen. . Input CO and Steam, Catalyst “R - 02 * - For CO. . . Input CO 2 and Lignite /charcoals

CO 2 Sequestration Pilot Plant installed under the DST Project

CO 2 Sequestration Pilot Plant installed under the DST Project

Scheme Diagram of CO 2 Capture Pilot Plant

Scheme Diagram of CO 2 Capture Pilot Plant

2. Salient Research Achievements 1. 2 a. Summary of progress The following four systems

2. Salient Research Achievements 1. 2 a. Summary of progress The following four systems have been incorporated in the Pilot Plant: 1. CO 2 Capture & sequestration system – Indigenous Development 2. Catalytic Flash Reduction of CO 2 using charcoal from gasifier /lignite. Production of Hydrogen from CO 3. Production of Methane using Catalytic Conversion process 4. Production of Algae from CO 2 Sequestration with Solar flux. 2. This project revalidated the useful application of the Amine absorption system to strip the CO 2 from the flue gasses but also validated the data on its efficiency for a Power Plant. • The simulation study further revealed that in a Thermal Power Plant, if a slip stream of the Flue gasses is recycled then a 30% reduction of CO 2 would be achieved by direct abatement and recycle would result in a decline of fuel consumption by at least 10% and thereby reducing the CO 2 emissions by 40% in the most cost effective manner.

1. 2 b. New observations if any: Innovations: • Capture of CO 2 from

1. 2 b. New observations if any: Innovations: • Capture of CO 2 from Biomass and a Boiler on • • Pilot Scale and achieving capture efficiency of the order of 78% Production of CO in stable form and Water Gas shift reaction to produce fuel molecules like H 2 Catalyst development to produce Methane from the captured CO 2 Enhancing productivity of selected Micro-Algae for production of Bio- diesel Plant Cost optimization through in-house designing and erection work Long Term Application: Deployment of the Technology to Actual Power Plants Immediate Application Green Energy Technology Centre (GETC) has been set-up for R&D and purpose

4. Progress made as against approved time schedule: The following work has been completed

4. Progress made as against approved time schedule: The following work has been completed up to approved time schedule i. e. 30 th June 2010: ØPilot Plant is ready for variety of experiments on CO 2 Capture & Sequestration – Up to 78% Capture has been achieved and CO 2 being sequestrated to Algae Pond and being converted into H 2 and CH 4 in a Table Top Setup. ØIn house development of Catalysts for H 2 and CH 4

The pilot plant installed at RGPV can be utilized variety of application such as:

The pilot plant installed at RGPV can be utilized variety of application such as: • Study of CO 2 capture in Mono – Ethanol Amine (MEA) ranging from 1 molar to 3 molar solutions. • Sequestration of CO 2 released from the stripper unit to variety of Algae and Development of lipid content for Bio-diesel production. • The pilot plant can be used for recycling of CO in stable form to the boiler for reduction in Green Home Gas Emission. • The pilot plant as well as table top plant shall be used for development of low cost catalysts for production of fuel elements like H 2, CH 4 etc. • The plant is being used for academic purpose like M. Tech. Projects/ practical and dissertations for Ph. D.

5. Research work which remains to be done and how it is proposed to

5. Research work which remains to be done and how it is proposed to be completed within approved time frame: 1. The Project Objectives have been achieved by 30 th June 2010 and Project Completion report has been submitted vide letter dated 5 th July 2010, 2. Efforts are under way to provide Online Instrumentation and process stabilization through 4000 hrs. trial run 3. Extension Project to this effect has been submitted DST

6. List of Publications with reprints No. of Papers published…. . 04 1. 0

6. List of Publications with reprints No. of Papers published…. . 04 1. 0 technology in June 2010 in the Journal of Indian Society of Analytical Geochemists 2. 0 A Key Note Address was presented at the International Conference held at NGRI, Hyderabad, Sponsored by CSIR, DST, ONGC and Ministry of Petroleum and Ministry of Earth Sciences – “Carbon Management Climate Change and Role of Applied Geo-Chemistry in Mineral Exploration” 3. 0 V K Sethi et al. “A Novel Approach for CO 2 Sequestration and Conversion in to Useful Multipurpose Fuel” International Journal ICER, JERAD, 2010. 4. 0 Chandrashekar. J. K. et al - Journal of Applied Geochemistry-Vol. 12 No. 4 (2010), ‘Reduction of CO 2 Emissions from the Coal Based Thermal Power Stations and a Case for Introduction of National Carbon/Emissions Trading by Capping Emissions from all Sectors and all Industry’

7. Patent filed/to be filed: A patent has already been filed on ‘Carbon Recycling

7. Patent filed/to be filed: A patent has already been filed on ‘Carbon Recycling Technology’, patent application No 1037/MAS/99 in October 1999 and a follow-up patent filed on ‘Zero Emission Technology Power Production’ using the above technology while proposing the Poly Generation Process to achieve this. 8. No. of Ph. Ds produced: 01 9. Technical personnel trained: 2 -Engineers & 2 Technicians- One on Boiler / Gasifier and other on CO 2 Capture / Sequestration of Chemical Plant

10. THE ROAD MAP AHEAD • Government of India has declared its policy on

10. THE ROAD MAP AHEAD • Government of India has declared its policy on CO 2 abatement by the announcement and adoption of the ‘National Action Plan on Climate Change’. • It has also made voluntary commitment at the Copenhagen Summit that the Country shall decrease its Carbon Intensity by 20% by 2020 and 50% by 2050. • The bulk of CO 2 is emitted by the Thermal Plants in the Power Sector. For EPA regulations to be implemented there have to be a road map as to how this can be done without major impact on the cost or efficiency of the Thermal Plants

Solution lies in… • The thermal plants in India have a thermal efficiency of

Solution lies in… • The thermal plants in India have a thermal efficiency of 35% and an emission ratio of 0. 90 Kg/k. Wh of CO 2 emissions as published by CEA. The reduction of 30% intensity would translate to a decrease of 0. 27 Kg/k. Wh of CO 2 emissions i. e. below 0. 65 Kg/k. Wh CO 2 emissions by 2020. • This decrease is possible by a combination of abatement and recycling measures. The CO 2 reduction by an Amine system of 30% CO 2 capture would mean a decrease of Thermal Efficiency by 2%.

Recycling of CO 2 • The CO 2 so captured needs to be either

Recycling of CO 2 • The CO 2 so captured needs to be either compressed to be used in Enhanced Oil Recovery or recycled. The better option would be that the same be recycled. • The system additions to the existing thermal plants would be a two stage gasifier to use up this CO 2. This would help recycle the Carbon of the CO 2 and the treated/ converted CO would be re-fed into the Boiler by means of a Gas Burner. • This two stage gasifier would be made of a Gasifier Chamber where the lignite /carbon is gasified by an Oxy Fuel combustion Process and this heated Gas fed into the second Reactor where treated Carbon is fed to react with the CO 2 being fed from the Amine stripper. The CO 2 so fed would be converted into CO having a LHV of 2414 kcal/Kg or 64. 37% coal equivalent in terms of the Indian Coal having an average heat value of 3750 kcal/Kg

Comparative Plant Studies • The Plant studies that were conducted at the RGPV for

Comparative Plant Studies • The Plant studies that were conducted at the RGPV for CO 2 capture and release, have validated the Amine capture system for the CO 2 for abetment from existing thermal plants world wide. • Data verified that the CO 2 capture results which validated the Energy level (for stripping) of 858 kcal/kgm CO 2 with Propane compression or without compression at 48% less energy at 450 kcal/kgm CO 2 as published by IEA (NETL– Cons Ville)

The Chemistry of Recycling • • The coal based power plant data for existing

The Chemistry of Recycling • • The coal based power plant data for existing power plants to be retrofitted with CO 2 capture was studied; there a number of projects using Amine Based System. For every 44 kg of CO 2 captured the CO produced would be 56 kg with 12 kg of Carbon which has a heat value of 7840 kcal/kg or a total of heat of value of 94080 kcal. This would result in a total production of 56 kg of CO which has a heat value of 2414 kcal and the total heat value of 1, 35, 184 kcal. Thus for every 44 kgs of CO 2 used in the process of Recycling CO by firing in an additional set of burners, the reduction in coal having heat value of 3785 kcal/kg would be 35. 71 kg coal equivalent energy delivered without the any Ash content as in coal, thereby increasing the boiler efficiency.

Contd. … • • • The total output of CO 2 in a 465

Contd. … • • • The total output of CO 2 in a 465 MW net (500 MW Unit) coal fired power plant would be 4, 50, 000 kg CO 2 /hr. If the CO 2 capture is 30% of this then the capture would be 1, 35, 000 kg of CO 2 /hr. This would result in a decrease @ 0. 8115 kg coal per kg of CO 2 or 109550 kg of coal per hour as feed stock for the Boiler. The additional consumption of Carbon would be 36818 kg/hr, this Carbon would have a heat value of 7840 kcal/kg. The total heat value added due to Carbon would be 74491 kg Coal equivalent. The net saving in Coal would be 35, 059 kg. The net CO 2 emission would be reduced to 279941 kg/hr. The CO 2 emissions would thus be 0. 56 kg /k. Wh. This would be achieved without any efficiency loss.

Schematic of Demo Project (Idea) Retrofit of existing 500 MW coal fired thermal power

Schematic of Demo Project (Idea) Retrofit of existing 500 MW coal fired thermal power plant in India. Demo with Post Combustion Capture and CO 2 Usage Coal CO 2 CO H 2 Converter H 2 Algae Plant CO 2 Capture Turbine Generator CO Converter Electricity Storage/EOR Air Recycled Fuel Steam Condensate Coal Bio-Fuel N 2 , CO 2, O 2 , H 2 O, FGD N 2 , O 2 , H 2 O Boiler Flue Gas Treatment Flue Gas Stack Plant engineers construction or modification RGTU specifies requirements – Industry partner engineers construction or modification

Demo Project –Strategy Plan • • Retrofit of existing 500 MW coal fired thermal

Demo Project –Strategy Plan • • Retrofit of existing 500 MW coal fired thermal power plant in India. Demo with Post Combustion Capture and CO 2 Usage Coal First full by-pass CO 2, then to recycling Scale of carbon capture 30% CO 2 CO Converter CO H 2 Converter H 2 CO 2 Capture Turbine Generator Algae Plant Electricity Bio-Fuel Storage/EOR Coal Air Recycled Fuel Steam Modification to turbine cycle Condensate Catalyst Dev. Boiler N 2 , CO 2, O 2 , H 2 O, Flue Gas Treatment FGD Storage or EOR N 2 , O 2 , H 2 O Implementation strategy: Algae plant from beginning Flue Gas Stack Addition of gas treatment facility required, depending on present application Work on burner By OEM Plant engineers construction or modification RGTU specifies requirements – Industry partner Engineers’ construction or modification

If the technology of CO 2 Capture Recycling & Sequestration is applied on a

If the technology of CO 2 Capture Recycling & Sequestration is applied on a 500 MW Coal based Thermal Power Plant with 30% capture we will get benefits like: •

Table Top H 2 Plant

Table Top H 2 Plant