CLIC main linac accelerating structure optimization 20 06

  • Slides: 33
Download presentation
CLIC main linac accelerating structure optimization. 20. 06. 2007 Alexej Grudiev, CLIC main linac

CLIC main linac accelerating structure optimization. 20. 06. 2007 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Outline • Optimization of CLIC main linac accelerating structure • Optimization procedure • Optimization

Outline • Optimization of CLIC main linac accelerating structure • Optimization procedure • Optimization constraints • Optimization results • Design of X-band accelerating structure for CLIC • The optimum structure • Modification of T 53 vg 3 MC (NLCTA test structure) Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Optimization procedure <Ea>, f, ∆φ, <a>, da, d 1, d 2 BD Bunch population

Optimization procedure <Ea>, f, ∆φ, <a>, da, d 1, d 2 BD Bunch population N Ls, Nb Cell parameters Q, R/Q, vg, Es/Ea, Hs/Ea Structure parameters Ns Q 1 , A 1 , f 1 Bunch separation BD η, Pin, Esmax, ∆Tmax rf constraints YES Cost function minimization NO Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Cell parameter calculation Single cell parameter interpolation a/λ 0. 7 1. 5 2. 3

Cell parameter calculation Single cell parameter interpolation a/λ 0. 7 1. 5 2. 3 d/λ 0. 1 0. 25 0. 4 WDS 2 cells Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Structure parameter calculation Dipole mode: Ns Fundamental mode: I N P(z) η, Pin, Esmax,

Structure parameter calculation Dipole mode: Ns Fundamental mode: I N P(z) η, Pin, Esmax, ∆Tmax Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Structure bandwidth model tr = (δf)-1 – rise time tp = tf + tb

Structure bandwidth model tr = (δf)-1 – rise time tp = tf + tb => tp’ = tf + tb + tr P η => η’ ●●●●● tf tb t Alexej Grudiev, CLIC main linac structure optimization. P ●●●●● tr tf tb tr t CLIC-ACE, 20 June 2007

Optimization constraints Beam dynamics (BD) constraints based on the simulation of the main linac,

Optimization constraints Beam dynamics (BD) constraints based on the simulation of the main linac, BDS and beam-beam collision at the IP: • N – bunch population depends on <a>/λ, Δa/<a>, f and <Ea> because of short-range wakes • Ns – bunch separation depends on the long-range dipole wake and is determined by the condition: Wt, 2 · N / Ea= 10 V/p. C/mm/m · 4 x 109 / 150 MV/m RF breakdown and pulsed surface heating (rf) constraints: • ΔTmax(Hsurfmax, tp) < 56 K Esurfmax < 380 MV/m • Pintp 1/3/Cin = 18 MW·ns 1/3/mm @ X-band • Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

X-band data @ BDR=10 -6 T 53 vg 5/vg 3 H 75 vg 4

X-band data @ BDR=10 -6 T 53 vg 5/vg 3 H 75 vg 4 S 18 Pintp 1/3/Cin = 18 Wu Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Pulse shape dependences Pin/Pinload = 0. 9 η: tp = tb + tf +

Pulse shape dependences Pin/Pinload = 0. 9 η: tp = tb + tf + tr ∆T~(t. Tp)1/2: t. Tp = [(tb + tf + tr)1/2 – 0. 5(tf + tr)1/2]2 P/C*(t. Pp)1/3: t. Pp = time when Pin/Pinload > 0. 9 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Effective pulse length for breakdown Rect-pulse => NLC-pulse 65 MV/m => 67. 5 MV/m

Effective pulse length for breakdown Rect-pulse => NLC-pulse 65 MV/m => 67. 5 MV/m Assuming: Ea*tp 1/6 = const 400 ns => 320 ns P 0. 1 Pin 0. 5 Pin tf tb t 20 ns NLC: tf = 100 ns; tb = 300 ns Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Frequency scaling of power constraint Experimental data at X-band 30 GHz Scaled structures show

Frequency scaling of power constraint Experimental data at X-band 30 GHz Scaled structures show the same gradient at X-band at 30 GHz: P/C • tp 1/3 • f = const Alexej Grudiev, CLIC main linac structure optimization. Eatp 1/6 = const CLIC-ACE, 20 June 2007

Optimizing Figure of Merit Luminosity per linac input power: Collision energy is constant Figure

Optimizing Figure of Merit Luminosity per linac input power: Collision energy is constant Figure of Merit (Fo. M = ηLbx/N) in [a. u. ] = [1 e 34/bx/m 2 • %/1 e 9] Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Cost model Total cost = Investment cost + Electricity cost for 10 years Ct

Cost model Total cost = Investment cost + Electricity cost for 10 years Ct = Ci + Ce Ci = Excel{fr; Ep; tp; Ea ; Ls ; f ; Δφ} Repetition frequency; Pulse energy; Pulse length; Accelerating gradient; Structure length (couplers included); Operating frequency; rf phase advance per cell Ce = (0. 032 + 2. 4/Fo. M) Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Optimization parameter space All structure parameters are variable: <Eacc> = 90 – 150 MV/m,

Optimization parameter space All structure parameters are variable: <Eacc> = 90 – 150 MV/m, f = 10 – 30 GHz, Δφ = 120 o, 150 o, <a>/λ= 0. 09 - 0. 21, Δa/<a> = 0. 01 – 0. 6, d 1/λ= 0. 025 - 0. 1, d 2 > d 1 Ls = 100 – 1000 mm. Alexej Grudiev, CLIC main linac structure optimization. N structures: 7 14 2 24 60 61 4 -------68. 866. 560 CLIC-ACE, 20 June 2007

Optimizing L/P and Ct max{L/P} min{Ct} © © x x © Alexej Grudiev, CLIC

Optimizing L/P and Ct max{L/P} min{Ct} © © x x © Alexej Grudiev, CLIC main linac structure optimization. © CLIC-ACE, 20 June 2007

Total Cost optimization Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Total Cost optimization Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of CLIC acc. structure Structure A C RF phase advance per cell: Δφ

Parameters of CLIC acc. structure Structure A C RF phase advance per cell: Δφ [o] 120 Average iris radius/wavelength: <a>/λ 0. 12 Input/Output iris radii: a 1, 2 [mm] 3. 87, 2. 13 Input/Output iris thickness: d 1, 2 [mm] 2. 66, 0. 83 Group velocity: vg(1, 2)/c [%] 2. 39, 0. 65 N. of reg. cells, str. length: Nc, l [mm] 24, 229 Bunch separation: Ns [rf cycles] 7 8 Number of bunches in a train: Nb 265 311 Pulse length, rise time: τp , τr [ns] 244, 30 297, 30 Input power: Pin [MW] 76 64. 6 Max. surface field: Esurfmax [MV/m] 323 298 Max. temperature rise: ΔTmax [K] 57 56 Efficiency: η [%] 31. 0 23. 8 Luminosity per bunch X-ing: Lb× [m-2] 2. 6× 1034 1. 3× 1034 Bunch population: N 5. 8× 109 4. 0× 109 Figure of merit: ηLb× /N [a. u. ] 13. 7 7. 7 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of CLIC main linac Structure A C Luminosity : L 1[1034 cm-2 s-1]

Parameters of CLIC main linac Structure A C Luminosity : L 1[1034 cm-2 s-1] 3. 3 2. 0 Repetition frequency: frep[Hz] 48 50 RF input power: Pl [MW/linac] 58. 3 62. 1 RF energy per pulse: Pl /frep [k. J/linac] 1210 1255 Electricity cost for 10 years: Ce [a. u. ] 0. 2 0. 36 Investment cost: Ci [a. u. ] 0. 97 0. 98 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of CLIC structure (C) Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20

Parameters of CLIC structure (C) Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

T 53 vg 3 MC structure Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE,

T 53 vg 3 MC structure Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

T 53 vg 3 MC structure Manufactured: 08. 2002 It requires 41 MW for

T 53 vg 3 MC structure Manufactured: 08. 2002 It requires 41 MW for 65 MV/m average gradient Test results: <Ea> = 73 MV/m @ 400 ns with BDR = 0. 04 BD/h => <Ea> = 78 MV/m @ 400 ns with BDR = 10 -6 => Pin = 60 MW @ 400 ns with BDR = 10 -6 In the following slides no P/C scaling is involved. Only Pin*(t. Pp)1/3 = const has been used to scale the maximum pulse length versus input power. Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

T 53 vg 3 MC cells w/o and with damping Name a [mm] NDS:

T 53 vg 3 MC cells w/o and with damping Name a [mm] NDS: first / last WDS: first/last 3. 89 / 3. 17 6810 / 6780 5480 / 5400 3. 29 / 1. 64 2. 86 / 1. 42 13500 / 15700 11700 / 13550 Esurfmax/Ea 2. 0 / 1. 95 / 1. 8 Hsurfmax/Ea [m. A/V] 2. 75 /2. 6 4. 6 / 4. 5 Pin [MW] @ 100 MV/m 102 / 44 QCu vg/c [%] R’/Q [LinacΩ/m] Modifications: 1. Introduce damping 2. Change structure length Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

T 53 vg 3 performance versus length N = 4 x 109 Ns =

T 53 vg 3 performance versus length N = 4 x 109 Ns = 8 P(tp. P)1/3 = 60 MW(400 ns)1/3 T 26 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. T 53 vg 3_D CLIC-ACE, 20 June 2007

Parameters of CLIC acc. structures Structure CLIC_C T 26 vg 3_D Frequency: f [GHz]

Parameters of CLIC acc. structures Structure CLIC_C T 26 vg 3_D Frequency: f [GHz] 12 11. 424 Average iris radius/wavelength: <a>/λ 0. 12 0. 134 Input/Output iris radii: a 1, 2 [mm] 3. 87, 2. 13 3. 89, 3. 17 Input/Output iris thickness: d 1, 2 [mm] 2. 66, 0. 83 1. 66 Group velocity: vg(1, 2)/c [%] 2. 39, 0. 65 2. 86, 1. 42 N. of reg. cells, str. length: Nc, l [mm] 24, 229 28, 270 Bunch separation: Ns [rf cycles] 8 8 Number of bunches in a train: Nb 311 66 Pulse length, rise time: τp , τr [ns] 297, 30 102, 12 Input power: Pin [MW] 64. 6 111 Max. surface field: Esurfmax [MV/m] 298 216 Max. temperature rise: ΔTmax [K] 56 26 Efficiency: η [%] 23. 8 10. 3 Luminosity per bunch X-ing: Lb× [m-2] 1. 3× 1034 Bunch population: N 4. 0× 109 Figure of merit: ηLb× /N [a. u. ] 7. 7 3. 3 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of CLIC main linac Structure CLIC_C T 26 vg 3_D Luminosity : L

Parameters of CLIC main linac Structure CLIC_C T 26 vg 3_D Luminosity : L 1[1034 cm-2 s-1] 2. 0 Repetition frequency: frep[Hz] 50 233 RF input power: Pl [MW/linac] 62. 1 143 RF energy per pulse: Pl /frep [k. J/linac] 1255 614 Electricity cost for 10 years: Ce [a. u. ] 0. 36 0. 74 Investment cost: Ci [a. u. ] 0. 98 0. 93 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of T 26 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE,

Parameters of T 26 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Summary • Optimization of CLIC frequency and gradient has been done, based on the

Summary • Optimization of CLIC frequency and gradient has been done, based on the cost model and taking into account new experimental data at 30 GHz and NLCTA measurement results at X-band • This (together with some other considerations) resulted in major change of CLIC parameters (from 150 MV/m@30 GHz to 100 MV/m@12 GHz) • RF design of X-band CLIC accelerating structure has been done based on the results of optimization Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Lbx/N for different gradients Why X-band ? A simplistic explanation: Crossing gives the optimum

Lbx/N for different gradients Why X-band ? A simplistic explanation: Crossing gives the optimum frequency Alexej Grudiev, CLIC main linac structure optimization. Determined by RF constraints CLIC-ACE, 20 June 2007

Parameters of CLIC acc. structures Structure CLIC_C T 23 vg 3_D T 53 vg

Parameters of CLIC acc. structures Structure CLIC_C T 23 vg 3_D T 53 vg 3_D Frequency: f [GHz] 12 11. 424 Average iris radius/wavelength: <a>/λ 0. 12 0. 134 Input/Output iris radii: a 1, 2 [mm] 3. 87, 2. 13 3. 89, 3. 17 Input/Output iris thickness: d 1, 2 [mm] 2. 66, 0. 83 1. 66 Group velocity: vg(1, 2)/c [%] 2. 39, 0. 65 2. 86, 1. 42 N. of reg. cells, str. length: Nc, l [mm] 24, 229 23, 232 58, 530 Bunch separation: Ns [rf cycles] 8 8 8 Number of bunches in a train: Nb 311 82 6 Pulse length, rise time: τp , τr [ns] 297, 30 105, 12 103, 12 Input power: Pin [MW] 64. 6 106 155 Max. surface field: Esurfmax [MV/m] 298 222 240 Max. temperature rise: ΔTmax [K] 56 29 23 Efficiency: η [%] 23. 8 10. 9 1. 3 Luminosity per bunch X-ing: Lb× [m-2] 1. 3× 1034 Bunch population: N 4. 0× 109 Figure of merit: ηLb× /N [a. u. ] 7. 7 3. 6 0. 4 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of CLIC main linac Structure CLIC_C T 23 vg 3_D T 53 vg

Parameters of CLIC main linac Structure CLIC_C T 23 vg 3_D T 53 vg 3_D Luminosity : L 1[1034 cm-2 s-1] 2. 0 Repetition frequency: frep[Hz] 50 188 2564 RF input power: Pl [MW/linac] 62. 1 136 1145 RF energy per pulse: Pl /frep [k. J/linac] 1255 724 447 Electricity cost for 10 years: Ce [a. u. ] 0. 36 0. 71 5. 7 Investment cost: Ci [a. u. ] 0. 98 0. 95 2. 0 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of T 23 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE,

Parameters of T 23 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007

Parameters of T 53 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE,

Parameters of T 53 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007