CLIC main linac accelerating structure optimization 20 06

















![Parameters of CLIC main linac Structure A C Luminosity : L 1[1034 cm-2 s-1] Parameters of CLIC main linac Structure A C Luminosity : L 1[1034 cm-2 s-1]](https://slidetodoc.com/presentation_image_h2/b0f7ad5dbd70f456432952dd57f0f7d1/image-18.jpg)



![T 53 vg 3 MC cells w/o and with damping Name a [mm] NDS: T 53 vg 3 MC cells w/o and with damping Name a [mm] NDS:](https://slidetodoc.com/presentation_image_h2/b0f7ad5dbd70f456432952dd57f0f7d1/image-22.jpg)

![Parameters of CLIC acc. structures Structure CLIC_C T 26 vg 3_D Frequency: f [GHz] Parameters of CLIC acc. structures Structure CLIC_C T 26 vg 3_D Frequency: f [GHz]](https://slidetodoc.com/presentation_image_h2/b0f7ad5dbd70f456432952dd57f0f7d1/image-24.jpg)









- Slides: 33
CLIC main linac accelerating structure optimization. 20. 06. 2007 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Outline • Optimization of CLIC main linac accelerating structure • Optimization procedure • Optimization constraints • Optimization results • Design of X-band accelerating structure for CLIC • The optimum structure • Modification of T 53 vg 3 MC (NLCTA test structure) Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Optimization procedure <Ea>, f, ∆φ, <a>, da, d 1, d 2 BD Bunch population N Ls, Nb Cell parameters Q, R/Q, vg, Es/Ea, Hs/Ea Structure parameters Ns Q 1 , A 1 , f 1 Bunch separation BD η, Pin, Esmax, ∆Tmax rf constraints YES Cost function minimization NO Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Cell parameter calculation Single cell parameter interpolation a/λ 0. 7 1. 5 2. 3 d/λ 0. 1 0. 25 0. 4 WDS 2 cells Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Structure parameter calculation Dipole mode: Ns Fundamental mode: I N P(z) η, Pin, Esmax, ∆Tmax Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Structure bandwidth model tr = (δf)-1 – rise time tp = tf + tb => tp’ = tf + tb + tr P η => η’ ●●●●● tf tb t Alexej Grudiev, CLIC main linac structure optimization. P ●●●●● tr tf tb tr t CLIC-ACE, 20 June 2007
Optimization constraints Beam dynamics (BD) constraints based on the simulation of the main linac, BDS and beam-beam collision at the IP: • N – bunch population depends on <a>/λ, Δa/<a>, f and <Ea> because of short-range wakes • Ns – bunch separation depends on the long-range dipole wake and is determined by the condition: Wt, 2 · N / Ea= 10 V/p. C/mm/m · 4 x 109 / 150 MV/m RF breakdown and pulsed surface heating (rf) constraints: • ΔTmax(Hsurfmax, tp) < 56 K Esurfmax < 380 MV/m • Pintp 1/3/Cin = 18 MW·ns 1/3/mm @ X-band • Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
X-band data @ BDR=10 -6 T 53 vg 5/vg 3 H 75 vg 4 S 18 Pintp 1/3/Cin = 18 Wu Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Pulse shape dependences Pin/Pinload = 0. 9 η: tp = tb + tf + tr ∆T~(t. Tp)1/2: t. Tp = [(tb + tf + tr)1/2 – 0. 5(tf + tr)1/2]2 P/C*(t. Pp)1/3: t. Pp = time when Pin/Pinload > 0. 9 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Effective pulse length for breakdown Rect-pulse => NLC-pulse 65 MV/m => 67. 5 MV/m Assuming: Ea*tp 1/6 = const 400 ns => 320 ns P 0. 1 Pin 0. 5 Pin tf tb t 20 ns NLC: tf = 100 ns; tb = 300 ns Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Frequency scaling of power constraint Experimental data at X-band 30 GHz Scaled structures show the same gradient at X-band at 30 GHz: P/C • tp 1/3 • f = const Alexej Grudiev, CLIC main linac structure optimization. Eatp 1/6 = const CLIC-ACE, 20 June 2007
Optimizing Figure of Merit Luminosity per linac input power: Collision energy is constant Figure of Merit (Fo. M = ηLbx/N) in [a. u. ] = [1 e 34/bx/m 2 • %/1 e 9] Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Cost model Total cost = Investment cost + Electricity cost for 10 years Ct = Ci + Ce Ci = Excel{fr; Ep; tp; Ea ; Ls ; f ; Δφ} Repetition frequency; Pulse energy; Pulse length; Accelerating gradient; Structure length (couplers included); Operating frequency; rf phase advance per cell Ce = (0. 032 + 2. 4/Fo. M) Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Optimization parameter space All structure parameters are variable: <Eacc> = 90 – 150 MV/m, f = 10 – 30 GHz, Δφ = 120 o, 150 o, <a>/λ= 0. 09 - 0. 21, Δa/<a> = 0. 01 – 0. 6, d 1/λ= 0. 025 - 0. 1, d 2 > d 1 Ls = 100 – 1000 mm. Alexej Grudiev, CLIC main linac structure optimization. N structures: 7 14 2 24 60 61 4 -------68. 866. 560 CLIC-ACE, 20 June 2007
Optimizing L/P and Ct max{L/P} min{Ct} © © x x © Alexej Grudiev, CLIC main linac structure optimization. © CLIC-ACE, 20 June 2007
Total Cost optimization Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of CLIC acc. structure Structure A C RF phase advance per cell: Δφ [o] 120 Average iris radius/wavelength: <a>/λ 0. 12 Input/Output iris radii: a 1, 2 [mm] 3. 87, 2. 13 Input/Output iris thickness: d 1, 2 [mm] 2. 66, 0. 83 Group velocity: vg(1, 2)/c [%] 2. 39, 0. 65 N. of reg. cells, str. length: Nc, l [mm] 24, 229 Bunch separation: Ns [rf cycles] 7 8 Number of bunches in a train: Nb 265 311 Pulse length, rise time: τp , τr [ns] 244, 30 297, 30 Input power: Pin [MW] 76 64. 6 Max. surface field: Esurfmax [MV/m] 323 298 Max. temperature rise: ΔTmax [K] 57 56 Efficiency: η [%] 31. 0 23. 8 Luminosity per bunch X-ing: Lb× [m-2] 2. 6× 1034 1. 3× 1034 Bunch population: N 5. 8× 109 4. 0× 109 Figure of merit: ηLb× /N [a. u. ] 13. 7 7. 7 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of CLIC main linac Structure A C Luminosity : L 1[1034 cm-2 s-1] 3. 3 2. 0 Repetition frequency: frep[Hz] 48 50 RF input power: Pl [MW/linac] 58. 3 62. 1 RF energy per pulse: Pl /frep [k. J/linac] 1210 1255 Electricity cost for 10 years: Ce [a. u. ] 0. 2 0. 36 Investment cost: Ci [a. u. ] 0. 97 0. 98 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of CLIC structure (C) Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
T 53 vg 3 MC structure Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
T 53 vg 3 MC structure Manufactured: 08. 2002 It requires 41 MW for 65 MV/m average gradient Test results: <Ea> = 73 MV/m @ 400 ns with BDR = 0. 04 BD/h => <Ea> = 78 MV/m @ 400 ns with BDR = 10 -6 => Pin = 60 MW @ 400 ns with BDR = 10 -6 In the following slides no P/C scaling is involved. Only Pin*(t. Pp)1/3 = const has been used to scale the maximum pulse length versus input power. Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
T 53 vg 3 MC cells w/o and with damping Name a [mm] NDS: first / last WDS: first/last 3. 89 / 3. 17 6810 / 6780 5480 / 5400 3. 29 / 1. 64 2. 86 / 1. 42 13500 / 15700 11700 / 13550 Esurfmax/Ea 2. 0 / 1. 95 / 1. 8 Hsurfmax/Ea [m. A/V] 2. 75 /2. 6 4. 6 / 4. 5 Pin [MW] @ 100 MV/m 102 / 44 QCu vg/c [%] R’/Q [LinacΩ/m] Modifications: 1. Introduce damping 2. Change structure length Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
T 53 vg 3 performance versus length N = 4 x 109 Ns = 8 P(tp. P)1/3 = 60 MW(400 ns)1/3 T 26 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. T 53 vg 3_D CLIC-ACE, 20 June 2007
Parameters of CLIC acc. structures Structure CLIC_C T 26 vg 3_D Frequency: f [GHz] 12 11. 424 Average iris radius/wavelength: <a>/λ 0. 12 0. 134 Input/Output iris radii: a 1, 2 [mm] 3. 87, 2. 13 3. 89, 3. 17 Input/Output iris thickness: d 1, 2 [mm] 2. 66, 0. 83 1. 66 Group velocity: vg(1, 2)/c [%] 2. 39, 0. 65 2. 86, 1. 42 N. of reg. cells, str. length: Nc, l [mm] 24, 229 28, 270 Bunch separation: Ns [rf cycles] 8 8 Number of bunches in a train: Nb 311 66 Pulse length, rise time: τp , τr [ns] 297, 30 102, 12 Input power: Pin [MW] 64. 6 111 Max. surface field: Esurfmax [MV/m] 298 216 Max. temperature rise: ΔTmax [K] 56 26 Efficiency: η [%] 23. 8 10. 3 Luminosity per bunch X-ing: Lb× [m-2] 1. 3× 1034 Bunch population: N 4. 0× 109 Figure of merit: ηLb× /N [a. u. ] 7. 7 3. 3 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of CLIC main linac Structure CLIC_C T 26 vg 3_D Luminosity : L 1[1034 cm-2 s-1] 2. 0 Repetition frequency: frep[Hz] 50 233 RF input power: Pl [MW/linac] 62. 1 143 RF energy per pulse: Pl /frep [k. J/linac] 1255 614 Electricity cost for 10 years: Ce [a. u. ] 0. 36 0. 74 Investment cost: Ci [a. u. ] 0. 98 0. 93 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of T 26 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Summary • Optimization of CLIC frequency and gradient has been done, based on the cost model and taking into account new experimental data at 30 GHz and NLCTA measurement results at X-band • This (together with some other considerations) resulted in major change of CLIC parameters (from 150 MV/m@30 GHz to 100 MV/m@12 GHz) • RF design of X-band CLIC accelerating structure has been done based on the results of optimization Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Lbx/N for different gradients Why X-band ? A simplistic explanation: Crossing gives the optimum frequency Alexej Grudiev, CLIC main linac structure optimization. Determined by RF constraints CLIC-ACE, 20 June 2007
Parameters of CLIC acc. structures Structure CLIC_C T 23 vg 3_D T 53 vg 3_D Frequency: f [GHz] 12 11. 424 Average iris radius/wavelength: <a>/λ 0. 12 0. 134 Input/Output iris radii: a 1, 2 [mm] 3. 87, 2. 13 3. 89, 3. 17 Input/Output iris thickness: d 1, 2 [mm] 2. 66, 0. 83 1. 66 Group velocity: vg(1, 2)/c [%] 2. 39, 0. 65 2. 86, 1. 42 N. of reg. cells, str. length: Nc, l [mm] 24, 229 23, 232 58, 530 Bunch separation: Ns [rf cycles] 8 8 8 Number of bunches in a train: Nb 311 82 6 Pulse length, rise time: τp , τr [ns] 297, 30 105, 12 103, 12 Input power: Pin [MW] 64. 6 106 155 Max. surface field: Esurfmax [MV/m] 298 222 240 Max. temperature rise: ΔTmax [K] 56 29 23 Efficiency: η [%] 23. 8 10. 9 1. 3 Luminosity per bunch X-ing: Lb× [m-2] 1. 3× 1034 Bunch population: N 4. 0× 109 Figure of merit: ηLb× /N [a. u. ] 7. 7 3. 6 0. 4 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of CLIC main linac Structure CLIC_C T 23 vg 3_D T 53 vg 3_D Luminosity : L 1[1034 cm-2 s-1] 2. 0 Repetition frequency: frep[Hz] 50 188 2564 RF input power: Pl [MW/linac] 62. 1 136 1145 RF energy per pulse: Pl /frep [k. J/linac] 1255 724 447 Electricity cost for 10 years: Ce [a. u. ] 0. 36 0. 71 5. 7 Investment cost: Ci [a. u. ] 0. 98 0. 95 2. 0 Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of T 23 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007
Parameters of T 53 vg 3_D Alexej Grudiev, CLIC main linac structure optimization. CLIC-ACE, 20 June 2007