Classification Theory and Universal Constructions in Categories of

  • Slides: 27
Download presentation
Classification Theory and Universal Constructions in Categories of Musical Objects Guerino Mazzola U &

Classification Theory and Universal Constructions in Categories of Musical Objects Guerino Mazzola U & ETH Zürich Internet Institute for Music Science guerino@mazzola. ch www. encyclospace. org

Contents • Enumeration of classical objects • Local classification techniques • Globalization and general

Contents • Enumeration of classical objects • Local classification techniques • Globalization and general addresses • Resolutions for global classification

Enumeration C Í Ÿ 12 (chords) M Í – 2 (motives) Enumeration = calculation

Enumeration C Í Ÿ 12 (chords) M Í – 2 (motives) Enumeration = calculation of the number of orbits of a set C of such objects under the canonical left action G¥C ® C of a subgroup G Í Aff*(F) = e. F. GL(F) Ambient module F = Ÿ 12 , – 2 in the above examples

Enumeration 1973 A. Forte (1980 J. Rahn) List of 352 orbits of chords under

Enumeration 1973 A. Forte (1980 J. Rahn) List of 352 orbits of chords under the translation group T 12 = eŸ 12 and the group TI 12 = eŸ 12. ± 1 of translations and inversions on Ÿ 12 1978 G. Halsey/E. Hewitt • Recursive formula for enumeration of translation orbits of chords in finite abelian groups F • Enumeration of orbit numbers for chords in cyclic groups Ÿn, n c 24 1980 G. Mazzola • List of the 158 affine orbits of chords in Ÿ 12 • List of the 26 affine orbits of 3 -elt. motives in (Ÿ 12)2 and 45 in Ÿ 5 ¥ Ÿ 12 1989 H. Straub /E. Köhler List of the 216 affine orbits of 4 -element motives in (Ÿ 12)2 1991. . . H. Fripertinger • Enumeration formulas for Tn, TIn, and affine chord orbits in Ÿn, n-phonic k-series, all-interval series, and motives in Ÿn ¥ Ÿm 2 • Lists of affine motive orbits in (Ÿ 12) up to 6 elements, explicit formula. . .

Enumeration x^144 + x^143 + 5 x^142 + 26 x^141 + 216 x^140 +

Enumeration x^144 + x^143 + 5 x^142 + 26 x^141 + 216 x^140 + 2 024 x^139 + 27 806 x^138 + 417 209 x^137 +6 345 735 x^136 + 90 590 713 x^135 + 1 190 322 956 x^134 + 14 303 835 837 x^133 +157 430 569 051 x^132 + 1 592 645 620 686 x^131 + 14 873 235 105 552 x^130 + 128 762 751 824 308 x^129 + 1 037 532 923 086 353 x^128 + 7 809 413 514 931 644 x^127 +55 089 365 597 956 206 x^126 + 365 290 003 947 963 446 x^125 +2 282 919 558 918 081 919 x^124 + 13 479 601 808 118798 229 x^123 +75 361 590 622 423 713 249 x^122 + 399 738 890 367 674230 448 x^121 +2 015 334 387 723 540 077 262 x^120 + 9 673 558 570 858 327 142 094 x^119 + 44 275 002 111 552 677 715 575 x^118 + 193 497 799 414 541 699 555 587 x^117 +808 543 433 959 017 353 438 195 x^116 + 3 234 171 338 137 153 259 094292 x^115 +12 397 650 890 304 440 505 241198 x^114 + 45 591 347 244 850 943 472027 532 x^113 + 160 994 412 344 908 368 725 437 163 x^112 + 546 405 205 018 625 434 948486 100 x^111 +1 783 852 127 215 514 388 216 575 524 x^110 + 5 606 392 061 138 587 678 507 139 578 x^109 +16 974 908 597 922 176 404 758662 419 x^108 +49 548 380 452 249 950 392 015617 673 x^107 + 139 517 805 378 058 810 895 892 716 876 x^106 +379 202 235 047 824 659 955 968 634 895 x^105 +995 405 857 334 028 240 446 249 995 969 x^104 + 2 524 931 913 311 378 421 460 541 875 013 x^103 +6 192 094 899 403 308 142 319 324 646 830 x^102 + 14 688 225 057 065 816 000 841247 153 422 x^101 +33 716 152 882 551 682 431 054950 635 828 x^100 + 74 924 784 036 765 597 482 162224 697 378 x^99 +161 251 165 409 134 463 248 992 354 275 261 x^98 + 336 225 833 888 858 733 322 982 932 904 265 x^97 +679 456 372 086 288 422 448 712 466 252 503 x^96 + 1 331 179 830 182 151 403 666 404 596 530 852 x^95 +2 529 241 676 111 626 447 928 668 220 456 264 x^94 + 4 661 739 558 127 027 290 220 867 616 981 880 x^93 +8 337 341 899 567 786 249 391 103 289 453 916 x^92 + 14 472 367 067 576 451 752 984797 361 008 304 x^91 +24 388 618 572 337 747 341 932969 998 362 288 x^90 + 39 908 648 567 034 355 259 311114 115 744 392 x^89 +63 426 245 036 529 210 051 949169 850 308 102 x^88 + 97 921 220 397 909 924 969 018620 386 852 352 x^87 +146 881 830 585 458 073 270 850 321 720 445 928 x^86 + 214 098 939 483 879 341 610 433 150 629 060 274 x^85 +303 306 830 919 747 863 651 620 555 026 700 930 x^84 + 417 668 422 888 061 171 460 770 548 484 103 836 x^83 +559 136 759 653 084 522 330 064 385 877 590 780 x^82 + 727 765 306 194 069 123 565 702 210 626 823 392 x^81 +921 077 965 629 957 077 012 552 741 715 036 692 x^80 + 1 133 634 419 214 796 834 928 853 170 296 724314 x^79 +1 356 926 047 220 511 677 349 073 201 120 481570 x^78 + 1 579 704 950 475 555 411 914 967 237 903 930342 x^77 +1 788 783 546 844 376 088 722 000 995 922 467990 x^76 + 1 970 254 341 437 213 013 502 048 964 983 877090 x^75 +2 110 986 794 386 177 596 749 436 553 816 924660 x^74 + 2 200 183 419 494 435 885 449 671 402 432 366956 x^73 +2 230 741 522 540 743 033 415 296 821 609 381912 x^72 + …. … . . . + 2024. x 5 + 216. x 4 + 26. x 3 + 5. x 2 + x + 1 = cycle index polynomial 2 230 741 522 540 743 033 415 296 821 609 381 912. x 72 ª 2. 23. 1036. x 72 average # of stars in a galaxis = 100 000 000

Enumeration Polya-de-Bruijn theory: Cycle index polynomial • Identify subsets C Í F (usually F

Enumeration Polya-de-Bruijn theory: Cycle index polynomial • Identify subsets C Í F (usually F = Ÿn) with their characteristic function c. C: F ® 2={0, 1} • For a permutation g in the group G Í Aff*(F), we have cycle index cyc(g) = (c 1, …cf), f = #F • Take indeterminates X 1, …Xf, set Xg = X 1 c 1. . . Xf cf • Cycle index polynomial is Z(G) = (#G)-1 SG Xg

Enumeration Polya-de-Bruijn theory: Configuration counting series • Consider polynomial Polya weights w(0), w(1) in

Enumeration Polya-de-Bruijn theory: Configuration counting series • Consider polynomial Polya weights w(0), w(1) in –[x] • For c: F ® 2, we have G-invariant product pw(c) = PFw(c(t)) • The configuration counting series is C(G, F, w) = S 2 F/G pw(c)

Enumeration Facts • For w(0) = 1, w(1) = x, the xk coefficient of

Enumeration Facts • For w(0) = 1, w(1) = x, the xk coefficient of C(G, F, w) is the number of G-orbits of k-element sets in F • For the constant weight w(0) = w(1) = 1, C(G, F, w) = # 2 F/G (Main) Theorem • C(G, F, w) = Z(G)(w(0)+w(1), w(0)2+w(1) 2, …, w(0)f+w(1)f) Corollary • # 2 F/G = Z(G)(2, 2, …, 2)

Enumeration From generalizations of the main theorem by N. G. de Bruijn, we have

Enumeration From generalizations of the main theorem by N. G. de Bruijn, we have (for example) the following enumerations: k= 0 1 2 3 4 5 6 7 8 9 10 11 12 T 12 1 1 6 19 43 66 80 66 43 19 6 1 1 TI 12 1 1 6 12 29 38 50 38 29 12 6 1 1 Aff*(Ÿ 12) 1 1 5 9 21 25 34 25 21 9 5 1 1 k 2 3 4 5 6 # of orbits of (k, 12)-series 6 30 275 2 000 14 060 k 7 8 9 10 11 12 # of orbits of (k, 12)-series 83 280 416 880 1 663 680 4 993 440 9 980 160 9 985 920 (dodecaphonic)

Local Techniques Categories of local compositions • Fix commutative ring R • For any

Local Techniques Categories of local compositions • Fix commutative ring R • For any two (left) R-modules A, B, let A@B = e. B. Lin(A, B) be the R-module of R-affine morphisms F(a) = eb. F 0(a) = b + F 0(a) F 0 = linear part, eb = translation part • The category Loc. R of local compositions over R has as objects the couples (K, A) of subsets K of R-modules A, and as morphisms f: (K, A) ® (L, B) set maps f: K ® L which are induced by affine morphism F in A@B.

Local Techniques Local Classification: Calculate the isomorphism classes in Loc. R! For finite local

Local Techniques Local Classification: Calculate the isomorphism classes in Loc. R! For finite local compositions, we have this procedure: • Represent (K, A) by an affine k: Rn ® A with K = {k(e 0), k(e 1), …, k(en)} for #K = n+1 • Then identify K to the orbit k. Sn+1 of the right action of the symmetric group of the affine basis e 0 = 0, e 1, . . . , en • Get rid of the translations within A by taking the linear part k 0 of k, corresponding to the passage to the difference d. K = {k(e 1) - k(e 0), …, k(en) - k(e 0)} • Take the induced right linear action of Sn+1 and the left action of GL(A) on Lin(Rn, A).

Local Techniques Proposition Let Gen(Rn, A) Í Lin(Rn, A) be the subset of difference

Local Techniques Proposition Let Gen(Rn, A) Í Lin(Rn, A) be the subset of difference maps dk: Rn ® A with • dk = surjective • dk(es) π 0 and dk(es) π dk(et) for all s π t. • Take the induced right linear action of Sn+1 and the left action of GL(A) on Gen(Rn, A) Let Lo. Class(A, n+1, R) be the set of isomorphism classes of • local compositions K of cardinality n+1 and ambient space A • K is generating, i. e. A = R. K = Ss, t R. (ks- kt) Then we have a canonical bijection Lo. Class(A, n+1, R) @ GL(A)Gen(Rn, A)/Sn+1

Local Techniques Let Xn(R, A) be the set of submodules V Í Rn with

Local Techniques Let Xn(R, A) be the set of submodules V Í Rn with • Rn/V @ A • es, es-et œ V for all s π t together with the above right action of Sn+1 Sending dk: Rn ® A to ker(dk) induces a bijection GL(A)Gen(Rn, A)/Sn+1 @ Xn(R, A)/Sn+1 Let Xn(R, r) be the Sn+1 -stable set of submodules V Í Rn with • Rn/V = locally free of rank r • es, es-et œ V for all s π t Xn(R, r) = Grassn, r(R) - Vn(R, r) = closed, Sn+1 -stable subscheme of Grassn, r(R)

Local Techniques Theorem (local geometric classification) There is a quotient scheme, i. e. ,

Local Techniques Theorem (local geometric classification) There is a quotient scheme, i. e. , an exact sequence Xn, r ¥ Sn+1 pr 1 m Xn, r /Sn+1 Its R-valued points are the orbits of Xn, r , and if R is semi-simple, Xn, r (R) = Xn(R, r)

Local Techniques Application to orbit algorithms for rings • • • R of finite

Local Techniques Application to orbit algorithms for rings • • • R of finite length R local self-injective E. g. R = Ÿsn , s = prime soc(Rn) Í V subspace V Í subgroup G Í Rn Sn+1 soc(V) π soc(Rn) V = soc(V) π soc(Rn) V π soc(V) V/soc (Rn) Í (R/soc(R))n VÍ (R/Rad(R))n I(V) Í Rn (direct factor) I(V) @ Rm m < n G : = Iso(I(V)) V Í Rm

Local Techniques 1 2 3 4 5 6 7 8 9 10 11 12

Local Techniques 1 2 3 4 5 6 7 8 9 10 11 12 generic 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Classes of 3 -element motives M Í (Ÿ 12)2

Globalization K K t Í Ct Ci ◊ K i ◊ ◊ Kit local

Globalization K K t Í Ct Ci ◊ K i ◊ ◊ Kit local iso Kti

Globalization The class nerve cn(K) of global composition is not classifying 2 5 II

Globalization The class nerve cn(K) of global composition is not classifying 2 5 II 2 10 5 10 2 10 6 2 V VII 10 2 VI IV 2 6 2 2 5 15 2 2 10 I 2 6 5 2 2 2 10 III

Globalization @B MÍ A @B B A = address of the composition (A= R)

Globalization @B MÍ A @B B A = address of the composition (A= R)

Globalization The category Loc. A of local A-addressed compositions has as objects the couples

Globalization The category Loc. A of local A-addressed compositions has as objects the couples (K, A@C) of sets K of affine morphisms in A@C and as morphisms f: (K, A@C) ® (L, A@D) set maps f: K ® L which are naturally induced by affine morphism F in C@D The category Glob. A of global A-addressed compositions has as objects KI coverings of sets K by atlases I of local Aaddressed compositions with manifold gluing conditions and manifold morphisms ff: KI ® LJ , including and compatible with atlas morphisms f: I ® J ! y f i s s a l C

Resolutions Standard A-addressed local compositions 0 c n, A+n = Rn≈ An+1 ei canonical

Resolutions Standard A-addressed local compositions 0 c n, A+n = Rn≈ An+1 ei canonical linear basis of Rn AD n a Î A, 0 c i c n, ai = (0, …, a, …, 0) si: A ® A+n s 0(a) = (0, a 0) si(a) = (ei, ai) AD n Í i=0 0<i A@A+n s. S s 0, s 1, …, sn Î A@B, S = {s 0, s 1, …, sn} Í A@B s. : ADn ® S: si ~> si universal property

Resolutions Standard A-addressed global compositions n* = covering of an interval [0, m] by

Resolutions Standard A-addressed global compositions n* = covering of an interval [0, m] by non-empty subsets n* induces a A-addressed global standard composition ADn* which is canonically deduced from ADm by the n*-charts Choose enumeration K = {k 0, k 1, …, km} of the global compostition KI. Call n*(KI) the covering of [0, m] corresponding to the atlas I. DKI = ADn*(KI) is the resolution of KI res(KI): D KI ® K I ◊ ◊ AD m i ® Ki universal morphism, natural in KI

Resolutions Represent KI by module complexes of function in D KI A module complex

Resolutions Represent KI by module complexes of function in D KI A module complex M on KI is a „coefficient system“ on the nerve n(KI), i. e. a functor • M(s) = R-module for simplex s • affine transition morphisms Ms, t: M(s) ® M(t), s Í t Important Examples: • Function complex n. G(KI): For simplex s, take local composition Ç s = Çs Ki n. G(KI)(s) = Loc. R(Ç s, A@R) • N Í n. G(KI) subcomplex; for morphism ff: LJ ® KI of global compositions, we have induced function complex N÷ff Í n. G( LJ)

Resolutions The resolution complex of KI res(KI): DKI ® KI Dn. G(KI) = n.

Resolutions The resolution complex of KI res(KI): DKI ® KI Dn. G(KI) = n. G(KI)÷res(KI) Classification Strategy: • Reconstruct KI from its resolution complex • Classify a relevant set of module complexes Res. A, n* = {N Í n. G(ADn*), properties…} which relate to resolution complexes of global compositions KI with n*(KI) @ n*

Resolutions Reconstruction of KI • Local construction for simplex s of the resolution ADn*

Resolutions Reconstruction of KI • Local construction for simplex s of the resolution ADn* and module N(s): e. N, s: ADs ® A@N(s)* e. N, s(s) (a)(l) = l(s)(a) for a function l in N(s) • Have local compositions s/N = Im(e. N, s) Í A@N(s)*, and canonical local morphisms s/N ® t/N for t Í s • Global construction: ADn*/N = colimn* s/N

Resolutions Proposition 1. Let KI have these properties (*) • the chart modules R.

Resolutions Proposition 1. Let KI have these properties (*) • the chart modules R. Ki are projective of finite type • the function modules n. G(KI)(Ki) are projective Then I) @ K I D / D n G (K A n* 2. Res. A, n* = {N Í n. G(ADn*), Const Í N N(s 0) = projective of finite type N separates points of ADn* } Then we have a canonical bijection Res. A, n*/Aut(ADn*) @ Iso. Classes[KI with (*) and n*(KI) @ n*]

Resolutions Theorem (global addressed geometric classification) Let A be locally free of a defined

Resolutions Theorem (global addressed geometric classification) Let A be locally free of a defined rank. Then there is a subscheme Jn* of a projective R-scheme of finite type such that its S-valued points w: Spec(S) ® Jn* are in bijection with the classifying orbits of module complexes N in SƒRADn* which are locally free of defined co-ranks on the zero simplexes of n*. Resn*, r ¥ Aut(ADn*) pr 1 m Resn*, r / Aut(ADn*) = Jn*