CISE 301 Numerical Methods Topic 8 Ordinary Differential

  • Slides: 18
Download presentation
CISE 301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28 -36 KFUPM

CISE 301: Numerical Methods Topic 8 Ordinary Differential Equations (ODEs) Lecture 28 -36 KFUPM (Term 101) Section 04 Read 25. 1 -25. 4, 26 -2, 27 -1 CISE 301_Topic 8 L 7 1

Outline of Topic 8 Lesson 1: Introduction to ODEs p Lesson 2: Taylor series

Outline of Topic 8 Lesson 1: Introduction to ODEs p Lesson 2: Taylor series methods p Lesson 3: Midpoint and Heun’s method p Lessons 4 -5: Runge-Kutta methods p Lesson 6: Solving systems of ODEs p Lesson 7: Multiple step Methods p Lesson 8 -9: Boundary value Problems p CISE 301_Topic 8 L 7 2

Lecture 34 Lesson 7: Multiple Step Methods CISE 301_Topic 8 L 7 3

Lecture 34 Lesson 7: Multiple Step Methods CISE 301_Topic 8 L 7 3

Outlines of Lesson 7 Solution of ODEs Lesson 7: Adam-Moulton Multi-step Predictor-Corrector Methods CISE

Outlines of Lesson 7 Solution of ODEs Lesson 7: Adam-Moulton Multi-step Predictor-Corrector Methods CISE 301_Topic 8 L 7 4

Learning Objectives of Lesson 7 p Appreciate the importance of multi-step methods. p Discuss

Learning Objectives of Lesson 7 p Appreciate the importance of multi-step methods. p Discuss advantages/disadvantages of multi -step methods. p Solve first order ODEs using Adams Moulton multi-step method. CISE 301_Topic 8 L 7 5

Single Step Methods p Single Step Methods: n n Euler and Runge-Kutta are single

Single Step Methods p Single Step Methods: n n Euler and Runge-Kutta are single step methods. Estimates of yi+1 depends only on yi and xi. xi-2 CISE 301_Topic 8 L 7 xi-1 xi xi+1 6

Multi-Step Methods p 2 -Step Methods n In a two-step method, estimates of yi+1

Multi-Step Methods p 2 -Step Methods n In a two-step method, estimates of yi+1 depends on yi, yi-1, xi, and xi-1 xi-2 CISE 301_Topic 8 L 7 xi-1 xi xi+1 7

Multi-Step Methods p 3 -Step Methods n In an 3 -step method, estimates of

Multi-Step Methods p 3 -Step Methods n In an 3 -step method, estimates of yi+1 depends on yi , yi-1 , yi-2, xi-1, and xi-2 CISE 301_Topic 8 L 7 xi-1 xi xi+1 8

Heun’s Predictor Corrector Method Heun’s predictor corrector method is not a multi-step method. CISE

Heun’s Predictor Corrector Method Heun’s predictor corrector method is not a multi-step method. CISE 301_Topic 8 L 7 9

2 -Step Predictor-Corrector • At each iteration one prediction step is done and as

2 -Step Predictor-Corrector • At each iteration one prediction step is done and as many correction steps as needed. • is the estimate of the solution at xi+1 after k correction steps. CISE 301_Topic 8 L 7 10

3 -Step Predictor-Corrector CISE 301_Topic 8 L 7 11

3 -Step Predictor-Corrector CISE 301_Topic 8 L 7 11

4 -Step Adams-Moulton Predictor. Corrector CISE 301_Topic 8 L 7 12

4 -Step Adams-Moulton Predictor. Corrector CISE 301_Topic 8 L 7 12

How Many Function Evaluations are Done? Number of function evaluations is the Computational Speed

How Many Function Evaluations are Done? Number of function evaluations is the Computational Speed or Efficiency How many evaluations per step? No need to repeat the evaluation of function f at previous points Only one new function evaluation in the predictor One function evaluation per correction step # of function evaluations = 1+ number of corrections CISE 301_Topic 8 L 7 13

Example CISE 301_Topic 8 L 7 14

Example CISE 301_Topic 8 L 7 14

Example CISE 301_Topic 8 L 7 15

Example CISE 301_Topic 8 L 7 15

Example CISE 301_Topic 8 L 7 16

Example CISE 301_Topic 8 L 7 16

Multi-Step Methods p Single Step Methods n n p Euler and Runge-Kutta are single

Multi-Step Methods p Single Step Methods n n p Euler and Runge-Kutta are single step methods. Information about y(x) is used to estimate y(x+h). Multistep Methods n n Adam-Moulton method is a multi-step method. To estimate y(x+h), information about y(x), y(x-h), y(x-2 h)… are used. CISE 301_Topic 8 L 7 17

Number of Steps p At each iteration, one prediction step is done and as

Number of Steps p At each iteration, one prediction step is done and as many correction steps as needed. p Usually few corrections are done (1 to 3). p It is usually better (in terms of accuracy) to use smaller step size than corrections. CISE 301_Topic 8 L 7 18