Circular Electron Positron Collider CEPC Injector Linac Design

  • Slides: 25
Download presentation
环形正负电子对撞机 Circular Electron Positron Collider CEPC Injector Linac Design Xiaoping Li, Cai Meng, Guoxi

环形正负电子对撞机 Circular Electron Positron Collider CEPC Injector Linac Design Xiaoping Li, Cai Meng, Guoxi Pei, Jingru Zhang, , Dou Wang, Chenghui Yu, Jie Gao, Shilun Pei, Yunlong Chi Institute of High Energy Physics, CAS, Beijing

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source • Positron source ØLinac design • Electron/Positron mode • Error study ØSummary ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 2

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source • Positron source ØLinac design • Electron/Positron mode • Error study ØSummary ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 3

Introduction Main parameters ØLinac design goal • High Availability and Reliability • Simple structure

Introduction Main parameters ØLinac design goal • High Availability and Reliability • Simple structure and mature technology: S-band accelerating structure as baseline(2856. 75 MHz) • Always should provide beams that can meet requirements of Booster • Should be have potential to meet the higher requirements and updates in the future Parameter e- /e+ beam energy Repetition rate e- /e+ bunch population Energy spread (e- /e+ ) Emittance (e- /e+ ) e- beam energy on Target e- bunch charge on Target ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA Symbol Unit Ee-/Ee+ frep Ne-/Ne+ σE εr Ge. V Hz n. C nm Ge. V n. C Value 10 100 >9. 4× 109 >1. 5 <2× 10 -3 <120 4 10 Potential >10 >1. 9× 1010 >3 <40 CEPC Injector Linac design 4

Introduction Layout of Linac Positron Linac ESBS FAS 50 Me. V DR PSPAS 4

Introduction Layout of Linac Positron Linac ESBS FAS 50 Me. V DR PSPAS 4 Ge. V 200 Me. V Ø ESBS ( Electron Source and Bunching System) • 50 Me. V && 11 n. C for positron production Ø FAS (the First Accelerating Section) • Electron beam to 4 Ge. V && 10 n. C for positron production Ø PSPAS (Positron Source and Pre-Accelerating Section) SAS 1. 1 Ge. V TAS 4 Ge. V 10 Ge. V Ø SAS (the Second Accelerating Section) • Positron beam to 4 Ge. V && 3 n. C Ø DR (Damping Ring) • Positron beam 1. 1 Ge. V, 60 m Ø TAS (the Third Accelerating Section) • Positron beam to 10 Ge. V && 3 n. C • Positron beam larger than 200 Me. V && larger than 3 n. C ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 5

Introduction Layout of Linac Electron Linac ESBS EBTL FAS 50 Me. V DR PSPAS

Introduction Layout of Linac Electron Linac ESBS EBTL FAS 50 Me. V DR PSPAS 4 Ge. V 200 Me. V Ø ESBS ( Electron Source and Bunching System) • 50 Me. V && 3 n. C Ø FAS (the First Accelerating Section) • Electron beam to 4 Ge. V && 3 n. C ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA TAS SAS 1. 1 Ge. V 4 Ge. V 10 Ge. V Ø EBTL (Electron Bypass Transport Line) • Electron beam @ 4 Ge. V && 3 n. C Ø TAS (the Third Accelerating Section) • Electron beam to 10 Ge. V && 3 n. C CEPC Injector Linac design 6

Introduction ESBS EBTL PSPAS FAS 50 Me. V Layout of Linac 4 Ge. V

Introduction ESBS EBTL PSPAS FAS 50 Me. V Layout of Linac 4 Ge. V 200 Me. V ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA DR 1. 1 Ge. V SAS TAS 4 Ge. V 10 Ge. V CEPC Injector Linac design 7

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source • Positron source ØLinac design • Electron/Positron mode • Error study ØSummary ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 8

Source design Electron source ØThermionic Triode electron gun ØSub-harmonic pre-buncher Parmela • 142. 8375

Source design Electron source ØThermionic Triode electron gun ØSub-harmonic pre-buncher Parmela • 142. 8375 MHz • 571. 35 MHz ØBuncher & A 0 • 2856. 75 MHz ØEmittance • <100 mm-mrad (Norm. Rms) @11 n. C ØTransmission • ~90% ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 9

Source design Positron source ØLayout of positron source • Target (Conventional) ü tungsten@15 mm

Source design Positron source ØLayout of positron source • Target (Conventional) ü tungsten@15 mm ü Beam size: 0. 5 mm • Electron Beam ü 4 Ge. V/10 n. C/100 Hz ü Beam power 4 k. W • Energy deposition ü 0. 784 Ge. V/e- @ FLUKA ü 784 W water cooling • AMD (Adiabatic Matching Device) ü Flux Concentrator ü Length: 100 mm ü Aperture: 8 mm 26 mm ü Magnetic field: (5. 5 T 0 T) + 0. 5 T ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 10

Source design Positron source ØLayout of positron source • Capture & Pre-accelerating structure ü

Source design Positron source ØLayout of positron source • Capture & Pre-accelerating structure ü Length: 2 m ü Aperture: 25 mm ü Gradient: 22 MV/m • Chicane ü Wasted electron separation • Norm. RMS. Emittance ü ~2400 mm-mrad ~120 nm@10 Ge. V • Energy: >200 Me. V • Positron yield ü Ne+/Ne- > 0. 5 @ [-8°, 12°, 235 Me. V, 265 Me. V] ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 11

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source • Positron source ØLinac design • Electron/Positron mode • Error study ØSummary ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 12

Linac design Electron linac • Focusing device: Triplet • 1 triplet+4 Acc. Stru. 1

Linac design Electron linac • Focusing device: Triplet • 1 triplet+4 Acc. Stru. 1 triplet+8 Acc. Stru. • Operation mode : • High charge mode (positron production) • 4 Ge. V & 10 n. C • ESBS+FAS • Low charge mode (electron injection) • 10 Ge. V & 3 n. C • ESBS+FAS+EBTL+TAS ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 13

Linac design Electron linac Electron injection ØLow charge mode • 10 Ge. V with

Linac design Electron linac Electron injection ØLow charge mode • 10 Ge. V with 3 n. C charge • Energy spread (rms): 0. 15% • Emittance (rms): 5 nm ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 14

Linac design Electron linac Positron production ØHigh charge mode • 4 Ge. V with

Linac design Electron linac Positron production ØHigh charge mode • 4 Ge. V with 10 n. C charge • Energy spread (rms): 0. 6% ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 15

Linac design Positron linac ØPSPAS SAS (DR) +TAS • SAS: 200 Me. V 4

Linac design Positron linac ØPSPAS SAS (DR) +TAS • SAS: 200 Me. V 4 Ge. V • Damping Ring @ 1. 1 Ge. V • TAS: 4 Ge. V 10 Ge. V ØTransverse focusing devices • FODO structure at low energy • Triplet at high energy ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 16

Linac design Positron linac ØPositron linac • 10 Ge. V with 3 n. C

Linac design Positron linac ØPositron linac • 10 Ge. V with 3 n. C charge • Energy spread (rms): 0. 16% • Emittance with DR (rms): 40(H)/24 nm(V) ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 17

Linac design Misalignment errors with correction Ø Whole Linac • One-to-one correction method for

Linac design Misalignment errors with correction Ø Whole Linac • One-to-one correction method for both e- and e+ • Errors: Gaussian distribution, 3σ truncated e- Ø Beam orbit • <1 mm • <0. 5 mm at high energy region Error description Unit Value Translational error mm 0. 1 Rotation error mrad 0. 2 % 0. 1 mm 0. 1 Magnetic element field error BPM uncertainty ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA e+ CEPC Injector Linac design 18

Linac design Misalignment errors with correction Ø 4 Ge. V Electron Linac with high

Linac design Misalignment errors with correction Ø 4 Ge. V Electron Linac with high charge • Method: First orbit correction + multiparticles simulation • Low charge ü Beam orbit can be controlled well • High charge ü Misalignments of Acc. Tubes ü Wakefield • In a real operation, correction is based on multi-particles orbit, so the orbit and emittance growth can be controlled better. ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 19

Linac design • Simulation condition • 5000 seeds • Accelerating structure • phase errors

Linac design • Simulation condition • 5000 seeds • Accelerating structure • phase errors and amp errors • 4 accelerating structures in one KLY • 3σ--Gaussian ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA Field errors • Energy jitter: 0. 2% • Energy spread < 0. 2% • Phase errors: 0. 5 degree (rms) • Grad. errors: 0. 5% (rms) CEPC Injector Linac design 20

Linac design DR V 1. 0 Energy Circumference Repetition frequency Bending radius Dipole strength

Linac design DR V 1. 0 Energy Circumference Repetition frequency Bending radius Dipole strength B 0 U 0 Damping time x/y/z 0 0 Nature z inj ext x/y inj / ext Energy acceptance by RF f. RF VRF Unit Ge. V M Hz M T ke. V ms % mm. mrad % % MHz MV Damping Ring Value 1. 1 58. 5 100 3. 62 1. 01 35. 8 12/12/6 0. 05 287. 4 7 (23 ps) 2500 704/471 0. 3/0. 06 1. 0 650 1. 8 ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA @ D. Wang CEPC Injector Linac design 21

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source

Outline ØIntroduction • Main parameters • Layout of Linac ØSource design • Electron source • Positron source ØLinac design • Electron/Positron mode • Error study ØSummary ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 22

Summary ØThe CEPC linac works with 100 Hz repetition, 10 Ge. V and one-bunch-perpulse,

Summary ØThe CEPC linac works with 100 Hz repetition, 10 Ge. V and one-bunch-perpulse, which can meet the requirements of Booster; ØThe linac have the potential to provide positron beam and electron beam with bunch charge larger than 3 n. C; ØOne preliminary damping ring is proposed, the emittance with DR is smaller than 40 nm; ØUp to now, there’s no bottleneck in linac design and further works continues. ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 23

Thank you! ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design

Thank you! ICHEP 2018, July 4 -11, COEX, SEOUL, KOREA CEPC Injector Linac design 24

Dynamic aperture with errors • • With only COD corrections, DA is nearly two

Dynamic aperture with errors • • With only COD corrections, DA is nearly two thirds of bare lattice At 120 Ge. V, radiative damping was considered. DA requirement @ 10 Ge. V determined by the beam stay clear region DA requirement @ 120 Ge. V: 1) H- quantum lifetime, 2) V- re-injection process from the collider in the on-axis injection scheme 120 Ge. V 10 Ge. V w damping BSC DA requirement 10 Ge. V ( x= y =120 nm) 120 Ge. V ( x=3. 57 nm, y= x*0. 005) H 4 x +5 mm 6 x +3 mm V 4 y +5 mm 49 y +3 mm DA results H 7. 7 x +5 mm 21. 8 x +3 mm • Requirement for linac emittance: < 150 nm, otherwise BSC > beam pipe V 14. 3 y +5 mm 779 y +3 mm