Circuit Simulation via Matrix Exponential Operators CK Cheng

  • Slides: 28
Download presentation
Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1

Circuit Simulation via Matrix Exponential Operators CK Cheng UC San Diego 1

Outline • General Matrix Exponential • Krylov Space and Arnoldi Orthogonalization • Matrix Exponential

Outline • General Matrix Exponential • Krylov Space and Arnoldi Orthogonalization • Matrix Exponential Method – Krylov Subspace Approximation – Invert Krylov Subspace Approximation – Rational Krylov Subspace Approximation 2

General Matrix Exponential • 3

General Matrix Exponential • 3

Krylov Space and Arnoldi Orthonormalization Input A and v 1=x 0/|x 0| Output AV=VH+hm+1

Krylov Space and Arnoldi Orthonormalization Input A and v 1=x 0/|x 0| Output AV=VH+hm+1 vm+1 em. T For i=1, …, m • Ti+1=Avi • For j=1, …, I – hji=<Ti+1, vj> – Ti+1=Ti+1 -hjivj • End For • hi+1, i=|Ti+1| • vi+1=1/hi+1 Ti+1 End For 4

Standard Krylov Space Generate: AV=VH+hm+1 vm+1 em. T Thus, we have e. Ahv 1≈Ve.

Standard Krylov Space Generate: AV=VH+hm+1 vm+1 em. T Thus, we have e. Ahv 1≈Ve. Hhe 1 Residual r=Cdx/dt-Gx=-hm+1 Cvm+1 em. Te. Hhe 1 Derivation: Cdx/dt-Gx=CVHe. Hhe 1 -GVe. Hhe 1 =(CVH-GV)e. Hhe 1 = C(VH-C-1 GV)e. Hhe 1 =C(VH-VH-hm+1 vm+1 em. T)e. Hhe 1 =-hm+1 Cvm+1 em. Te. Hhe 1 5

Standard Mexp Error trend sweep m and h 6

Standard Mexp Error trend sweep m and h 6

Invert Krylov Space Generate: A-1 V=VH+hm+1 vm+1 em. T Let H=H-1, we have e.

Invert Krylov Space Generate: A-1 V=VH+hm+1 vm+1 em. T Let H=H-1, we have e. Ahv 1≈Ve. Hhe 1 Residual r=Cdx/dt-Gx=hm+1 Gvm+1 em. THe. Hhe 1 Derivation: Cdx/dt-Gx=CVHe. Hhe 1 -GVe. Hhe 1 =(CVH-GV)e. Hhe 1 = G(G-1 CVH-V)e. Hhe 1 =G(A-1 VH-V)e. Hhe 1 =hm+1 Gvm+1 em. THe. Hhe 1 7

Invert Matrix Exponential • large step size with less dimension sweep m and h

Invert Matrix Exponential • large step size with less dimension sweep m and h 8

Rational Krylov Space Generate: (1 -r. A)-1 V=VH+hm+1 vm+1 em. T Let H=1/r (I-H-1)

Rational Krylov Space Generate: (1 -r. A)-1 V=VH+hm+1 vm+1 em. T Let H=1/r (I-H-1) we have e. Ahv 1≈Ve. Hhe 1 Residual r=Cdx/dt-Gx=-hm+1(C/r-G)vm+1 em. TH-1 e. Hhe 1 Derivation: Cdx/dt-Gx=CVHe. Hhe 1 -GVe. Hhe 1 =(CVH-GV)e. Hhe 1 = (1/r CV(I-H-1)-GV)e. Hhe 1 =(1/r. CV(H-1)-GVH)H-1 e. Hhe 1 =((1/r. C-G)VH-1/r. CV)H-1 e. Hhe 1 =-hm+1(C/r-G)vm+1 em. TH-1 e. Hhe 1 9

Rational Matrix Exponential • large step size with less dimension fix , sweep m

Rational Matrix Exponential • large step size with less dimension fix , sweep m and h 10

Different needs large m 11

Different needs large m 11

Different 12

Different 12

Spectral Transformation – = 10 f • • • Small RC mesh, 100 by

Spectral Transformation – = 10 f • • • Small RC mesh, 100 by 100 Different h for Krylov subspace Different for rational Krylov subspace 13

Spectral Transformation– = 1 p • • • Small RC mesh, 100 by 100

Spectral Transformation– = 1 p • • • Small RC mesh, 100 by 100 Different h for Krylov subspace Different for rational Krylov subspace 14

Spectral Transformation– = 100 p • • • Small RC mesh, 100 by 100

Spectral Transformation– = 100 p • • • Small RC mesh, 100 by 100 Different h for Krylov subspace Different for rational Krylov subspace 15

Sweep for Large Range 16

Sweep for Large Range 16

Sweep for Large Range 17

Sweep for Large Range 17

Difference Between Inverted and Rational 18

Difference Between Inverted and Rational 18

Fixed = 1 p, sweep time step h 19

Fixed = 1 p, sweep time step h 19

Fixed = 1 n, sweep time step h 20

Fixed = 1 n, sweep time step h 20

Fixed = 1 u, sweep time step h 21

Fixed = 1 u, sweep time step h 21

Fixed = 1 m, sweep time step h 22

Fixed = 1 m, sweep time step h 22

Fixed = 1, sweep time step h 23

Fixed = 1, sweep time step h 23

Fixed = 1 k, sweep time step h 24

Fixed = 1 k, sweep time step h 24

Fixed = 1 M, sweep time step h 25

Fixed = 1 M, sweep time step h 25

Krylov Space Residual Generate: AV=VH+hm+1 vm+1 em. T Thus, we have e. Ahv 1≈Ve.

Krylov Space Residual Generate: AV=VH+hm+1 vm+1 em. T Thus, we have e. Ahv 1≈Ve. Hhe 1 Residual r=Cdx/dt-Gx=-hm+1 Cvm+1 em. Te. Hhe 1 Derivation: 0 1. Set Y=[e 1 H 2 e 1 … Hm-1 e 1] 1 0 2. We have YC=HY where C= … … 1 zm+cm-1 zm-1+…+c 1 z+c 0=0 has roots �� 1, �� 2, … �� m -c 0 -c 1 -c 2 … 0 -cm-2 1 -cm-1 26

Krylov Space Residual • 1 ��. 1 m-1 �� 1 1 ��. 2 m-1

Krylov Space Residual • 1 ��. 1 m-1 �� 1 1 ��. 2 m-1 �� 2 . . . 1 ��. m m-1 �� m 27

Invert Krylov Space Residual • 28

Invert Krylov Space Residual • 28