Charge Changing Cross Section CCCS Measurement of Neutronrich

  • Slides: 27
Download presentation
Charge Changing Cross Section (CCCS) Measurement of Neutron-rich Carbon Isotopes at 50 A Me.

Charge Changing Cross Section (CCCS) Measurement of Neutron-rich Carbon Isotopes at 50 A Me. V. Tran Dinh Trong Ø Research Center for Nuclear Physics, Osaka University, Japan

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Content Motivation Experiment

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Content Motivation Experiment setup Data analysis Results and discussion Conclusion

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Motivation q Proton

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Motivation q Proton and neutron distributions radii are good observables for testing nuclear structure model. q The AMD calculation predicted that proton densities (radii) of C isotopes are almost constant. We want to experimentally confirm this using CCCS measurement. q q Proton distribution radii (charge radii) have recently been determined for He, Li, Be isotopes by isotope-shift measurements. However, isotope-shift method is extremely challenging for Z>4, especially AMD prediction C isotopes Y. Kanada-En’yo, PRC 71(2005), 014310

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Nuclear Radii and

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Nuclear Radii and Cross Section q q Geometrical model: Glauber model: ü It works very well for interaction or reaction cross section from 30 A to 1000 A Me. V Matter radii can be determined by interaction or reaction cross sections M. Takechi et al. , Phys. Rev. C 79, 061601 (2009)

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Extension of Glauber

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Extension of Glauber Model to CCCS ü Charge-Changing Cross Section σcc is the cross section for all (direct) processes which result in a change of the atomic number(Z) of the projectile Tested by stable nuclei and Li isotopes. ü CCCS Exp. Glauber Isotope shift CCCS Rp of Li isotope I. Tanihata et al, Prog. Part. Nucl. Phys. 68 (2013), 215

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Experiment method v

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Experiment method v Method: Transmission method Ø identify and count out-going nuclei with the same atomic number = Nout(Z)/Nin(Z) Ø , 0 : with C target and without C target Ø 1 - Pm : Acceptance factor. Ø t : target thickness. v Primary beam: 22 Ne, 80 A Me. V. v Secondary beam: C isotopes, ~50 A Me. V.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Experiment setup ENCourse

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Experiment setup ENCourse RCNP, Osaka Univ. F 2 Slit F 2 DPPAC F 2 Si F 2 UPPAC F 1 PL F 1 Dgd F 1 Slit F 0 Target Na. I MUSIC Target TRIGGER VETO F 3 DPPAC F 3 Si F 3 UPPAC Multi Sampling Ionization Chamber (MUSIC

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Tracking and Counting

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Tracking and Counting Beam - Nin Na. I F 3 DPPAC Targe t RF - TOF Veto Si - d. E MUSIC Target TRIGGER VETO F 3 DPPAC F 3 UPPAC FSi F 3 UPPAC Si d. E PID before Target Trigge r MUSI C -Estimation: 246/1221408=0. 02014%

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Tracking and Counting

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Tracking and Counting Beam - Nin MUSICd. E Na. I PID after Target MUSIC Target TRIGER VETO F 3 DPPAC F 3 Si F 3 UPPAC Si d. E PID before Target RF - TOF Na. I - E Si - d. E -At downstream det. : 284/1221408=0. 02325% -Estimation: 246/1221408=0. 02014%

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Identify and Count

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Identify and Count scattered particles – Nout(Z) 5 3. 2 6 1 3 5 4. 3 5. 6. 7. Na. I 2. 4 MUSIC 1. Target TRIGGER VETO Nout(Z) = 1+2+3 F 3 DPPAC F 3 Si F 3 UPPAC 7 Beam. Elastic and inelastic. Reaction in Na. I detecto Proton pickup. Proton removal. Contaminant. Outside acceptance.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Acceptance (1 –

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Acceptance (1 – Pm) σcc = 1128 mb σcc = 942 mb # 186 -> ~20% 1 - Pm ΔNi / (N 0 ΔΩ) e. g) Pm = 0. 00391 Na. I Acceptance of each MUSIC layer was determined. Rutherford scattering was used to fit and calculate out -of-acceptance factor. Checked with GEANT 4 simulation. dθ Pm(12 C)=0. 00391 ± 0. 0004 Pm θ(deg)

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Charge-Changing Cross Section

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Charge-Changing Cross Section Ø Ø CCCSs of C isotopes increase slowly with neutron number for 12 -18 C. This trend is similar with the high energy data.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Extracting proton distribution

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Extracting proton distribution radii Unknown parameters: 5 12 C e-scattering on 12 C Target Unknown : 3 AC(A=13 - 18) on 12 C Target p(12 C) n(12 C) NN(950) R(E) I(950), CC(950) p(12 C), n(12 C) Unknown : 2 I(950), CC(950) NN(E) p(AC) n(AC) Rp 2 1/2 I(E), CC(E) Rn 2 1/2

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber model Closed symbol: CCCS Open symbol: Reaction cross section

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Consistency between low

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Consistency between low and high energy Ø From high energy data, we have rms of proton and neutron radii. Ø Using those rms radii and NN(E) from 12 C data. CCCS at low energy was calculated by using Glauber model.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber model

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Conclusion Ø We

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Conclusion Ø We have measured CCCSs of 10 -18 C isotopes at 50 A Me. V using RI beam at EN Course, RCNP, Osaka University. Ø The CCCSs are almost constant for 12 -18 C, in similar trend as the high-energy data. Ø The CCCSs at different beam energies are consistently understood by Glauber model. Ø Rms proton radii were calculated by using Glauber model, the trend is consistent with AMD prediction. Ø We can determine rms charge radii by CCCSs at low energy.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy List of collaborators

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy List of collaborators D. T. Tran. A, B, T. T. Nguyen. B, C, I. Tanihata. A, D, M. Fukuda. E, H. J. Ong. A, N. Aoi. A, Y. Ayyad. A, P. Y. Chan. A, T. H. Hoang. A, B, T. Hashimoto. F, E. Ideguchi. A, A. Inoue. A, T. Kawabata. G, H. K. Le. B, K. Matsuta. E, M. Mihara. E, S. Momota. H, D. Nagae. I, A. Ozawa. I, ARCNP, Osaka BIOP Hanoi, CPham Univ. ; Vietnam; Thach Univ. J A D, R. P. P. Ren , H. Sakaguchi , J. Tanaka. A, S. Ngoc Terashima Vietnam; J, Wada DBeihang Univ. China; EDept. of Phys. Osaka Univ. ; FIBS, Korea; A GDept. of Phys. Kyoto Univ. ; IIOP Univ. of Kochi Univ. of Tech. ; W. P. Liu. J, HT. Yamamoto Tsukuba; JIMP, China. Thank you for your

Charge Changing Cross Section (CCCS) Measurement of Neutron-rich Carbon Isotopes at 50 A Me.

Charge Changing Cross Section (CCCS) Measurement of Neutron-rich Carbon Isotopes at 50 A Me. V. D. T. Tran. A, B, T. T. Nguyen. B, C, I. Tanihata. A, D, M. Fukuda. E, H. J. Ong. A, N. Aoi. A, Y. Ayyad. A, P. Y. Chan. A, T. H. Hoang. A, B, T. Hashimoto. F, E. Ideguchi. A, A. Inoue. A, T. Kawabata. G, H. K. Le. B, K. Matsuta. E, M. Mihara. E, S. Momota. H, D. Nagae. I, A. Ozawa. I, P. P. Ren. J, Presenter: Tran Dinh Trong A H. Sakaguchi , J. Tanaka. A, S. Terashima. D, R. Wada. J, W. P. Liu. J, T. A ARCNP, Osaka Univ. , BIOP Hanoi, Yamamoto Vietnam, CPham Ngoc Thach Univ. Vietnam, DBeihang Univ. China, EDept. of Phys. Osaka Univ. , FIBS, Korea, GDept. of Phys. Kyoto Univ. , HKochi Univ. of Tech. , IIOP Univ. of Tsukuba, JIMP, China.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber model calculation

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Glauber Model Nuclear

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Glauber Model Nuclear radii and interaction cross section: Glauber model for interaction cross section works very well from 30 A to 1000 A Me. V M. Takechi et al. , Phys. Rev. C 79, 061601 (2009)

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Experiment setup RCNP,

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Experiment setup RCNP, Osaka Univ. identify and count out-going nuclei with the same atomic number Na. I MUSIC Target TRIGER VETO F 3 DPPA F 3 Si F 3 UPPA F 2 Slit F 2 DPPA F 2 Si F 2 UPPA F 1 PL F 1 Dgd F 1 Slit F 0 Target

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Systematic Error Ø

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Systematic Error Ø Ø Ø Statistic error was considered as binominal distribution. Stability of results was checked by changing the definition of good beam. It showed as number of remaining beam counts. Main systematic error come from beam selection and acceptance factor.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Glauber model calculation

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Glauber model calculation

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Extracting proton distribution

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Extracting proton distribution radii Ø For 12 C case: Ø p: from electron scattering data. Ø n, NN using fit Glauber model with reaction cross section and CCCS. Ø NN(E): using dependence reaction cross section on energy. Ø For other isotopes: Using NN(E) from 12 C data, fit Glauber model with reaction cross section and CCCS to obtain P , n.

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber

Tran Dinh Trong, NN 2015 – June 21 -26, Catania, Italy Results of Glauber model calculation