Chapter Six Sediments Sedimentary Rocks Sediment Sediment loose

  • Slides: 36
Download presentation
Chapter Six Sediments & Sedimentary Rocks

Chapter Six Sediments & Sedimentary Rocks

Sediment • Sediment - loose, solid particles originating from: – Weathering and erosion of

Sediment • Sediment - loose, solid particles originating from: – Weathering and erosion of pre-existing rocks – Chemical precipitation from solution, including secretion by organisms in water • Classified by particle size – – – Boulder - >256 mm Cobble - 64 to 256 mm Pebble - 2 to 64 mm Sand - 1/16 to 2 mm Silt - 1/256 to 1/16 mm Clay - <1/256 mm

SEDIMENTATION AND SEDIMENTARY ROCKS I. INTRODUCTION IMPORTANCE OF SEDIMENTARY ROCKS: i) 75% OF ROCKS

SEDIMENTATION AND SEDIMENTARY ROCKS I. INTRODUCTION IMPORTANCE OF SEDIMENTARY ROCKS: i) 75% OF ROCKS EXPOSED AT THE EARTH’S SURFACE ii) SOURCE OF FOSSIL FUELS, IRON AND ALUMINUM ORES, AND GROUNDWATER iii) RECORD OF EARTH’S HISTORY

TYPES OF SEDIMENT

TYPES OF SEDIMENT

II ORIGIN OF SEDIMENTARY ROCKS: A. INTRODUCTION 1. REVIEW OF WEATHERING PROCESSES: 2. CLASSIFICATION

II ORIGIN OF SEDIMENTARY ROCKS: A. INTRODUCTION 1. REVIEW OF WEATHERING PROCESSES: 2. CLASSIFICATION OF SEDIMENTS a) DETRITAL SEDIMENT: PREEXISTING FRAGMENTS OF PREEXISTING IGNEOUS, SEDIMENTARY AND METAMORPHIC ROCKS b) CHEMICAL SEDIMENT: PRECIPITATED FROM WATER OR EXTRACTED BY ORGANISMS AND DEPOSITED LATER B. SEDIMENT TRANSPORT AND TEXTURE 1. INTRODUCTION i) TRANSPORTATION AND DEPOSITION OF CHEMICAL SEDIMENTS ii) TRANSPORTATION AND DEPOSITION OF DETRITAL SEDIMENTS

2. GRAIN SIZE – CONTROLLED BY: a) NATURE OF PARENT ROCKS b) NATURE AND

2. GRAIN SIZE – CONTROLLED BY: a) NATURE OF PARENT ROCKS b) NATURE AND ENERGY LEVEL OF TRANSPORT MEDIUM 1) SORTING · WELL-SORTED: WIND MOST SELECTIVE POORLY-SORTED: GLACIERS AND FLOODING RIVERS SORT POORLY 2) CURRENT VELOCITY

Grain size • 3) GRAIN SHAPE - DEPENDS ON: • a) TRANSPORT MEDIA: SWIFTLY

Grain size • 3) GRAIN SHAPE - DEPENDS ON: • a) TRANSPORT MEDIA: SWIFTLY FLOWING RIVERS BOUNCE PEBBLES • • AND SAND GRAINS AROUND VIGOROUSLY • • b) DISTANCE FROM PARENT ROCK (AT THE BASE IF A GLACIER MAY • • BE GROUND TO A ROCKY POWDER) • • c)MINERAL HARDNESS:

Sediment in a Stream

Sediment in a Stream

C. SEDIMENTARY STRUCTURES: 1. BEDDING (STRATIFICATION): ARRANGMENT OF SEDIMENT PARTICLES INTO DISTINCT LAYERS a)

C. SEDIMENTARY STRUCTURES: 1. BEDDING (STRATIFICATION): ARRANGMENT OF SEDIMENT PARTICLES INTO DISTINCT LAYERS a) CHANGES IN SEDIMENT: b) CHANGES IN TRANSPORT ENERGY 2. GRADED BEDDINGS: SEDIMENT LAYER (FORMED BY A SINGLE DEPOSITONAL EVENT) IN WHICH PARTICLE SIZE VARIES GRADUALLY WITH THE COARSEST PARTICLES ON THE BOTTOM

Development of a bedding plane

Development of a bedding plane

Develop. Bedding plane-contd.

Develop. Bedding plane-contd.

Develop. Bedding plane contd.

Develop. Bedding plane contd.

Graded bedding of sediment

Graded bedding of sediment

Development of cross-bedding

Development of cross-bedding

Cementation & Recrystallization • 4. CEMENTATION: PRECIPITATION OF DISSOLVED IONS IN THE PORE •

Cementation & Recrystallization • 4. CEMENTATION: PRECIPITATION OF DISSOLVED IONS IN THE PORE • • SPACE • a) CALCIUM CARBONATE • • b) SILICA • • c) IRON COMPOUNDS • • 5. CLASTIC TEXTURE: FORMED BY COMPACTION AND CEMENTATION OF • • SEDIMENT PARTICLES HAS CLASTIC TEXTURE • • 6. RECRYSTALLIZATION: RECRYSTALLIZATION OF CERTAIN UNSTABLE • MINERALS INTO NEW, MORE STABLE MINERALS •

III. CLASSICATION OF SEDIMENTARY ROCKS: DETRITAL SEDIMENTARY ROCKS: • • MUDSTONES SANDSTONES CONGLOMERATES BRECCIAS

III. CLASSICATION OF SEDIMENTARY ROCKS: DETRITAL SEDIMENTARY ROCKS: • • MUDSTONES SANDSTONES CONGLOMERATES BRECCIAS A. DETRITAL SEDIMENTARY ROCKS: 1. INTRODUCTION: CLASSIFICATION BASED ON PARTICLE SIZE a) ALL DETRITAL ROCKS ARE CLASTIC b) SAND SILT PREDOMINANTLY QUARTZ c) FINER-SIZED PARTICLES OF CLAY MINERALS

 2. MUDSTONES a) MORE THAN HALF OF ALL SEDIMENTARY ROCKS b) CONTAIN THE

2. MUDSTONES a) MORE THAN HALF OF ALL SEDIMENTARY ROCKS b) CONTAIN THE SMALLEST PARTICLES (0. 004 mm IN DIAMETER) c) ENVIRONMENTS OF DEPOSITION: LAKES, LAGOONS, DEEP OCEAN BASINS, RIVER FLOODPLAINS d) COLOR VARIETY OF SHALE REPRESENTS MINERAL COMPOSITION e) PRACTICAL USES OF SHALE: BRICKS, CERAMICS, CEMENT, AND OIL SHALE

 3. SANDSTONES: a) 25% OF ALL SEDIMENTARY ROCKS b) SANDSTONE PARTICLES (1/16 -2

3. SANDSTONES: a) 25% OF ALL SEDIMENTARY ROCKS b) SANDSTONE PARTICLES (1/16 -2 MM IN DIAMETER) c) PRACTICAL USES OF SANDSTONES: BUILDINGS AND RESERVOIR FOR FOSSIL FUELS AND GROUNDWATER 4. CONGLOMERATES AND BRECCIAS a) GRAINS LARGER THAN 2 MM b) CONGLOMERATES HAVE ROUNDED GRAINS c) BRECCIAS HAVE ANGULAR GRAINS

B. CHEMICAL SEDIMENTARY ROCKS 1. INORGANIC CHEMICAL SEDIMENTARY ROCKS a) LIMESTONE (INORGANIC) i) FORMATION

B. CHEMICAL SEDIMENTARY ROCKS 1. INORGANIC CHEMICAL SEDIMENTARY ROCKS a) LIMESTONE (INORGANIC) i) FORMATION ii) OOLITIC LIMESTONE iii) TUFA iv) TRAVERTINE

Cross-bedding & mudcracks 3. CROSS-BEDDING: SEDIMENTARY LAYERS DEPOSITED AT AN ANGLE TO THE UNDERLYING

Cross-bedding & mudcracks 3. CROSS-BEDDING: SEDIMENTARY LAYERS DEPOSITED AT AN ANGLE TO THE UNDERLYING SET OF BEDS 4. SURFACE SEDIMENTARY FEATURES a) RIPPLE MARKS: SMALL SURFACE RIDGES PRODUCED WHEN WATER OR WIND FLOWS OVER SEDIMENT AFTER IT IS DEPOSITED b) MUDCRACKS: OCCUR ON THE TOP OF A SEDIMENT LAYER WHEN MUDDY SEDIMENT DRIES AND CONTRACTS

Origin of mud cracks

Origin of mud cracks

Asymmetric and symmetric ripples

Asymmetric and symmetric ripples

D. LITHIFICATION: TURNING SEDIMENT INTO SEDIMENTARY ROCK • 1. DEFINITION OF DIAGENESIS: CHANGES IN

D. LITHIFICATION: TURNING SEDIMENT INTO SEDIMENTARY ROCK • 1. DEFINITION OF DIAGENESIS: CHANGES IN THE SEDIMENT DUE TO INCRESED HEAT, PRESSURE, AND CIRCULATING GROUNDWATER • 2. DEFINITION OF LITHIFICATION: END RESULT OF DIAGENESIS • • 3. COMPACTION: DIAGENETIC PROCESS BY WHICH THE WEIGHT OF OVERLYING MATERIALS REDUCES THE VOLUME OF SEDIMENTARY BODY

Lithification of sediment

Lithification of sediment

Initial deposits of flat/tabular clay

Initial deposits of flat/tabular clay

Formation of ooliths

Formation of ooliths

Locations of subsurface evaporite

Locations of subsurface evaporite

Formation of coal from swamp deposits

Formation of coal from swamp deposits

Formation of coal –contd.

Formation of coal –contd.

Common geological environment

Common geological environment

Geology at a glance

Geology at a glance

Marine sedimentary environment

Marine sedimentary environment

Sedimentary facies formation

Sedimentary facies formation

Sedi. Facies formation – contd.

Sedi. Facies formation – contd.

Landword Migration

Landword Migration

Chapter Summary • • • • % of sedimentary rocks in outer 10 miles

Chapter Summary • • • • % of sedimentary rocks in outer 10 miles Basic classification of sedimentary rocks Most sedi. Rocks – Chemical or detrital Definition of sedimentary rocks Sorting by wind, glaciers (well sorted vs poor sorting) Degree of sedimentary particle rounding Bedding plane, sedimentary structure, occurrence Diagenesis, Lithification, Cementation Composition of detrital sedimentary rocks Environment – deposition of shale Breccia and Conglomerate Oolitic Limestone Definition of Sedimentary Facies – Characteristics that distinguish one from another