Chapter 9 Phase Diagrams ISSUES TO ADDRESS When

  • Slides: 34
Download presentation
Chapter 9: Phase Diagrams ISSUES TO ADDRESS. . . • When we combine two

Chapter 9: Phase Diagrams ISSUES TO ADDRESS. . . • When we combine two elements. . . what is the resulting equilibrium state? • In particular, if we specify. . . -- the composition (e. g. , wt% Cu - wt% Ni), and -- the temperature (T ) then. . . How many phases form? What is the composition of each phase? What is the amount of each phase? What is the structure of each phase Phase A Phase Behavior Laughlin p. 67 Phase B Nickel atom Copper atom

Components and Phases • Components: The elements or compounds which are present in the

Components and Phases • Components: The elements or compounds which are present in the alloy (e. g. , Al and Cu) • Phases: The physically and chemically distinct material regions that form (e. g. , α and β). Optical Mettalography α (lighter phase) β (darker phase) 1µm Aluminum-Copper Alloy

Solubility Limit • Solution – solid, liquid, or gas solutions, single phase • Mixture

Solubility Limit • Solution – solid, liquid, or gas solutions, single phase • Mixture – more than one phase Sugar/Water Phase Diagram • Solubility Limit: Question: What is the solubility limit for sugar in water at 20ºC? Temperature (ºC) Maximum concentration for which only a single phase solution exists. 100 Solubility Limit 80 60 40 L (syrup) 20 0 20 L (liquid) + S (solid sugar) 40 6065 80 100 Composition (wt% sugar) Problem 9. 2: At 170°C, what is the maximum solubility (a) of Pb in Sn? (b) of Sn in Pb? 
The lead-tin phase diagram is shown in the Animated Figure 9. 8.

Isomorphous Binary Phase Diagram Cu-Ni phase diagram 1600 -- binary 2 components: Cu and

Isomorphous Binary Phase Diagram Cu-Ni phase diagram 1600 -- binary 2 components: Cu and Ni. -- isomorphous i. e. , complete solubility of one component in another 1500 L (liquid) 1400 s u d α ui liq L +lidus so T(ºC) • System is: 1300 α 1200 1100 1000 solid solution 0 20 40 60 wt% Ni 80 100

Criteria for Solid Solubility: Hume–Rothery rules • Same crystal structure • Similar electronegativities •

Criteria for Solid Solubility: Hume–Rothery rules • Same crystal structure • Similar electronegativities • Similar atomic radii Crystal Structure electroneg r (nm) Ni FCC 1. 9 0. 1246 Cu FCC 1. 8 0. 1278 • Ni and Cu are totally soluble in one another for all proportions.

Structure BCC FCC

Structure BCC FCC

Periodic Table

Periodic Table

Determination of phases present • If we know T and Co, then we know

Determination of phases present • If we know T and Co, then we know which phases are present. Cu-Ni phase diagram A(1100ºC, 60 wt% Ni): 1 phase: α B(1250ºC, 35 wt% Ni): 2 phases: L + α 1500 L 1400 T(ºC) • Examples: 1300 B (1250ºC, 35) 1600 L+ α α 1200 1100 1000 A(1100ºC, 60) 0 20 40 60 wt% Ni 80 100

Determination of phase compositions: Lever Rule Tie line –– also sometimes called an isotherm

Determination of phase compositions: Lever Rule Tie line –– also sometimes called an isotherm T(ºC) What fraction of each phase? Think of the tie line as a lever (teeter-totter) tie line 1300 L B TB 1200 20 α + L α R 30 CL Mα ML S C 0 40 C α wt% Ni 50 R S

Slow Cooling of a Cu-Ni Alloy C 0 = 35 wt% Ni alloy T(ºC)

Slow Cooling of a Cu-Ni Alloy C 0 = 35 wt% Ni alloy T(ºC) L L: 35 wt%Ni 1300 L: 35 wt% Ni α: 46 wt% Ni 32 35 24 46 43 L: 32 wt% Ni 36 a: 43 wt% Ni 1200 L: 24 wt% Ni a: 36 wt% Ni α 1100 20 30 35 C 0 40 50 wt% Ni

Cored vs Equilibrium Structures Uniform Ca: 35 wt% Ni T(ºC) L 1300 32 35

Cored vs Equilibrium Structures Uniform Ca: 35 wt% Ni T(ºC) L 1300 32 35 24 46 43 36 1200 First α to solidify: 46 wt% Ni α Last a to solidify: < 35 wt% Ni 1100 20 30 35 C 0 40 50 wt% Ni

Mechanical Properties: Cu-Ni System • Effect of solid solution strengthening on: -- Ductility (%EL)

Mechanical Properties: Cu-Ni System • Effect of solid solution strengthening on: -- Ductility (%EL) 400 TS for pure Ni 300 TS for pure Cu 200 0 20 40 60 80 100 Cu Ni Composition, wt% Ni Elongation (%EL) Tensile Strength (MPa) -- Tensile strength (TS) 60 %EL for pure Cu %EL for pure Ni 50 40 30 20 Cu 40 60 80 100 Ni Composition, wt% Ni

Binary-Eutectic Systems =low melting 2 components Ex. : Cu-Ag system • 3 single phase

Binary-Eutectic Systems =low melting 2 components Ex. : Cu-Ag system • 3 single phase regions (L, α, β) Cu-Ag system 1200 L (liquid) 1000 TE 800 α L+α 8. 0 L+β β 779ºC 71. 9 91. 2 600 α +β 400 200 0 20 40 60 CE 80 wt% Ag Eutectic Phase Reaction: cooling heating 100

Microstructural Development in Eutectic Systems I Pb-Sn • For alloys for which C 0

Microstructural Development in Eutectic Systems I Pb-Sn • For alloys for which C 0 < 2 wt% Sn • Result: at room temperature -- polycrystalline with grains of a phase having composition C 0 T(ºC) L: C 0 wt% Sn 400 L α L 300 200 TE 100 α L+ α α: C 0 wt% Sn α+β 0 10 20 30 C 0 wt% Sn 2 (room T solubility limit)

Microstructural Development in Eutectic Systems II L: C 0 wt% Sn T(ºC) • For

Microstructural Development in Eutectic Systems II L: C 0 wt% Sn T(ºC) • For alloys for which 400 2 wt% Sn < C 0 < 18. 3 wt% Sn • Result: at temperatures in α + β range 300 -- polycrystalline with a grains and small β-phase particles 200 L L +α α TE L α a: C 0 wt% Sn α β 100 α+ β 0 10 20 30 C 0 C, wt% 2 (sol. limit at T room ) 18. 3 (sol. limit at TE) Sn

Microstructural Development in Eutectic Systems III • For alloy of composition C 0 =

Microstructural Development in Eutectic Systems III • For alloy of composition C 0 = CE • Result: Eutectic microstructure (lamellar structure) -- alternating layers (lamellae) of α and β phases. T(ºC) Micrograph of Pb-Sn eutectic microstructure L: C 0 wt% Sn 300 α 200 L+ α L β 183ºC TE 100 β: 97. 8 wt% Sn α: 18. 3 wt%Sn 0 20 18. 3 40 60 CE 61. 9 80 100 97. 8 wt% Sn 160 μm

Lamellar Eutectic Structure

Lamellar Eutectic Structure

Microstructural Development in Eutectic Systems IV • For alloys for which 18. 3 wt%

Microstructural Development in Eutectic Systems IV • For alloys for which 18. 3 wt% Sn < C 0 < 61. 9 wt% Sn • Result: α phase particles and a eutectic microconstituent T(ºC) • Just above TE : L: C 0 wt% Sn Cα = 18. 3 wt% Sn CL = 61. 9 wt% Sn Wα = S = 0. 50 R+S WL = (1 - Wα ) = 0. 50 L 300 α L L+ α α 200 R TE S S R • Just below TE : Cα = 18. 3 wt% Sn 100 primary α eutectic β 0 20 18. 3 40 60 61. 9 80 wt% Sn 100 97. 8 Cβ = 97. 8 wt% Sn Wα = S = 0. 73 R+S Wβ = 0. 27

Hypoeutectic & Hypereutectic 300 L T(ºC) α 200 L+ α L+β β TE System)

Hypoeutectic & Hypereutectic 300 L T(ºC) α 200 L+ α L+β β TE System) α+β 100 0 20 40 hypoeutectic: C 0 = 50 wt% Sn α α α 60 80 eutectic 61. 9 C, wt% Sn hypereutectic: (illustration only) eutectic: C 0 = 61. 9 wt% Sn β β α α β α 175 mm 100 160 mm eutectic micro-constituent β β β

Intermetallic Compounds Mg 2 Pb Note: intermetallic compound exists as a line - not

Intermetallic Compounds Mg 2 Pb Note: intermetallic compound exists as a line - not an area – because stoichiometry (i. e. composition of a compound) is fixed.

Eutectic, Eutectoid, & Peritectic • Eutectic - liquid transforms to two solid phases cool

Eutectic, Eutectoid, & Peritectic • Eutectic - liquid transforms to two solid phases cool L heat S 1+S 3 (For Pb-Sn, 183ºC, 61. 9 wt% Sn) • Eutectoid –all solid phases intermetallic compound - cementite S 2 S 1+S 3 cool ϒ heat α+ Fe 3 C (For Fe-C, 727ºC, 0. 76 wt% C) • Peritectic - liquid and one solid phase transform to a second solid phase S 1 + L S 2 δ +L cool heat ϒ (For Fe-C, 1493ºC, 0. 16 wt% C) • Peritectoid – all solid phases S 1 + S 2 S 3

Eutectoid & Peritectic Cu-Zn Phase diagram Peritectic transformation γ + L Eutectoid transformation δ

Eutectoid & Peritectic Cu-Zn Phase diagram Peritectic transformation γ + L Eutectoid transformation δ γ+ε δ

Iron-Carbon (Fe-C) Phase Diagram T(ºC) 1600 δ L → γ + Fe 3 C

Iron-Carbon (Fe-C) Phase Diagram T(ºC) 1600 δ L → γ + Fe 3 C - Eutectoid (B): γ → α + Fe 3 C L 1400 1200 γ +L γ (austenite) γ γ 1000 γ α+ 800 α 120 mm Result: Pearlite = alternating layers of α and Fe 3 C phases L+Fe 3 C γ +Fe 3 C B 727ºC = T eutectoid 600 400 0 (Fe) A 1148ºC α +Fe 3 C 1 0. 76 2 3 4 4. 30 5 6 wt% C Fe 3 C (cementite-hard) α (ferrite-soft) Fe 3 C (cementite) - Eutectic (A): 6. 7

Hypereutectoid Steel T(ºC) 1600 δ γγ γ γ Fe 3 C 1200 proeutectoid Fe

Hypereutectoid Steel T(ºC) 1600 δ γγ γ γ Fe 3 C 1200 proeutectoid Fe 3 C L 1400 γ +L γ (austenite) L+Fe 3 C 1148ºC 1000 γ +Fe 3 C 800 60 μm a 600 400 0 (Fe) pearlite α +Fe 3 C 0. 76 γ 1 C 0 2 3 4 5 6 6. 7 C, wt%C

T(ºC) 1600 δ L 1400 γ γ 1200 γ +L γ (austenite) γ γ

T(ºC) 1600 δ L 1400 γ γ 1200 γ +L γ (austenite) γ γ γ + Fe 3 C 800 pearlite proeutectoid ferrite 727ºC α 600 α + Fe 3 C 400 α 0 (Fe) C 0 pearlite 100 μm L+Fe 3 C 1148ºC 1000 1 0. 76 α Hypoeutectoid Steel 2 3 4 5 6 6. 7 C, wt% C For a 99. 6 wt% Fe-0. 40 wt% C steel at a temperature just below the eutectoid, determine the following: a) The compositions of Fe 3 C and ferrite (α). b) The amount of cementite (in grams) that forms in 100 g of steel. c) The amounts of pearlite and proeutectoid ferrite (α) in the 100 g.

Solution to Example Problem a) The compositions of Fe 3 C and ferrite (α).

Solution to Example Problem a) The compositions of Fe 3 C and ferrite (α). RS tie line just below the eutectoid Cα = 0. 022 wt% C CFe 3 C = 6. 70 wt% C pearlite b) Wight Fraction of cementite 1600 δ T(ºC) 1200 γ γ +L (austenite) γ + Fe 3 C 800 Amount of Fe 3 C in 100 g = (100 g)WFe 3 C = (100 g)(0. 057) = 5. 7 g 727ºC R S α + Fe 3 C 600 400 0 L+Fe 3 C 1148ºC 1000 Fe C (cementite) L 1400 Cα C 0 1 2 3 4 C , wt% C 5 6 6. 7 CFe 3 C

The amounts of pearlite in the 100 g. c) Using the VX tie line

The amounts of pearlite in the 100 g. c) Using the VX tie line just above the eutectoid and realizing that α pearlite 1600 δ L 1400 T(ºC) 1200 γ γ +L (austenite) 1000 γ + Fe 3 C 800 Amount of pearlite in 100 g = (100 g)Wpearlite 727ºC VX 600 400 0 α + Fe 3 C 1 Cα C 0 Cγ = (100 g)(0. 512) = 51. 2 g L+Fe 3 C 1148ºC 2 3 4 C, wt% C 5 6 Fe C (cementite) C 0 = 0. 40 wt% C Cα = 0. 022 wt% C Cpearlite = Cγ = 0. 76 wt% C 6. 7

Alloying with Other Elements Ti Mo Si W Cr Mn Ni wt. % of

Alloying with Other Elements Ti Mo Si W Cr Mn Ni wt. % of alloying elements • Ceutectoid changes: Ceutectoid (wt% C) T Eutectoid (ºC) • Teutectoid changes: Ni Cr Si Ti Mo W Mn wt. % of alloying elements

VMSE: Interactive Phase Diagrams Microstructure, phase compositions, and phase fractions respond interactively Change alloy

VMSE: Interactive Phase Diagrams Microstructure, phase compositions, and phase fractions respond interactively Change alloy composition

Summary • Phase diagrams are useful tools to determine: -- the number and types

Summary • Phase diagrams are useful tools to determine: -- the number and types of phases present, -- the composition of each phase, -- and the weight fraction of each phase given the temperature and composition of the system. • The microstructure of an alloy depends on -- its composition, and -- whether or not cooling rate allows for maintenance of equilibrium. • Important phase diagram phase transformations include eutectic, eutectoid, and peritectic.

Effect of Temperature & Composition • Altering T can change # of phases: path

Effect of Temperature & Composition • Altering T can change # of phases: path A to B. • Altering C can change # of phases: path B to D. B (100ºC, C = 70) D (100ºC, C = 90) 1 phase Temperature (ºC) 100 L 80 (liquid) 60 L (liquid solution 40 i. e. , syrup) + S (solid sugar) A (20ºC, C = 70) 20 0 2 phases 0 20 40 60 70 80 100 C = Composition (wt% sugar)

EX 1: Pb-Sn Eutectic System • For a 40 wt% Sn-60 wt% Pb alloy

EX 1: Pb-Sn Eutectic System • For a 40 wt% Sn-60 wt% Pb alloy at 150ºC Cα = 11 wt% Sn Cβ = 99 wt% Sn 300 -- the relative amount of each phase 200 150 Cβ - C 0 S = Wα = R+S Cβ - Cα 99 - 40 99 - 11 Wβ = R+S 40 - 11 = 99 - 11 = Pb-Snsystem T(ºC) 59 = 0. 67 88 C 0 - Cα Cβ - Cα = = 29 = 0. 33 88 100 L (liquid) α L+ α 18. 3 L+β β 183ºC 61. 9 R 97. 8 S α+β 0 11 20 Cα 40 C 0 60 80 wt% Sn 99100 Cβ

EX 2: Pb-Sn Eutectic System • For a 40 wt% Sn-60 wt% Pb alloy

EX 2: Pb-Sn Eutectic System • For a 40 wt% Sn-60 wt% Pb alloy at 220ºC Ca = 17 wt% Sn CL = 46 wt% Sn the relative amount of each phase CL - C 0 46 - 40 = Wa = CL - Cα 46 - 17 6 = = 0. 21 29 C 0 - Cα 23 = WL = = 0. 79 CL - Cα 29 T(ºC) 300 220 200 α L+ α R L L+β β S 183ºC 100 a +b 0 17 20 Cα 40 46 60 C 0 CL 80 wt% Sn 100