CHAPTER 8 Approximation Theory Dongshin Kim Computer Networks

  • Slides: 27
Download presentation
CHAPTER 8. Approximation Theory Dongshin Kim Computer Networks Research Lab. Dept. of Computer Science

CHAPTER 8. Approximation Theory Dongshin Kim Computer Networks Research Lab. Dept. of Computer Science and Engineering Korea University dongshin@korea. ac. kr 9 november 2005. Computer Networks Research Lab. Korea University

Contents § Discrete Least Squares Approximation § Orthogonal Polynomials and Least Squares Approximation §

Contents § Discrete Least Squares Approximation § Orthogonal Polynomials and Least Squares Approximation § Chebyshev Polynomials and Economization of Power Series § Rational Function Approximation § Trigonometric Polynomial Approximation § Fast Fourier Transforms Computer Networks Research Lab. 2/17

Discrete Least Squares Approximation § Finding best equation – minimize a 0 and a

Discrete Least Squares Approximation § Finding best equation – minimize a 0 and a 1 § Another approach (absolute deviation): – minimize a 0 and a 1 Computer Networks Research Lab. 3/17

Discrete Least Squares Approximation § Least square Computer Networks Research Lab. 4/17

Discrete Least Squares Approximation § Least square Computer Networks Research Lab. 4/17

Discrete Least Squares Approximation § Solution Computer Networks Research Lab. 5/17

Discrete Least Squares Approximation § Solution Computer Networks Research Lab. 5/17

Orthogonal Polynomials and Least Squares Approximation § Polynomial Pn(x) Computer Networks Research Lab. 6/17

Orthogonal Polynomials and Least Squares Approximation § Polynomial Pn(x) Computer Networks Research Lab. 6/17

Orthogonal Polynomials and Least Squares Approximation § Definition 8. 1: linearly independent § If

Orthogonal Polynomials and Least Squares Approximation § Definition 8. 1: linearly independent § If is a polynomial of degree j, for each j=0, 1, …, n, then is linearly independent on any interval [a, b] Computer Networks Research Lab. 7/17

Orthogonal Polynomials and Least Squares Approximation Computer Networks Research Lab. 8/17

Orthogonal Polynomials and Least Squares Approximation Computer Networks Research Lab. 8/17

Orthogonal Polynomials and Least Squares Approximation § Gram-Schmidt process Computer Networks Research Lab. 9/17

Orthogonal Polynomials and Least Squares Approximation § Gram-Schmidt process Computer Networks Research Lab. 9/17

Computer Networks Research Lab. 10/17

Computer Networks Research Lab. 10/17

Orthogonal Polynomials and Least Squares Approximation Computer Networks Research Lab. 11/17

Orthogonal Polynomials and Least Squares Approximation Computer Networks Research Lab. 11/17

Chebyshev Polynomials and Economization of Power Series § Chebyshev Polynomials – Orthogonal on (-1,

Chebyshev Polynomials and Economization of Power Series § Chebyshev Polynomials – Orthogonal on (-1, 1) with respect to the weight function Computer Networks Research Lab. 12/17

Chebyshev Polynomials and Economization of Power Series Computer Networks Research Lab. 13/17

Chebyshev Polynomials and Economization of Power Series Computer Networks Research Lab. 13/17

Chebyshev Polynomials and Economization of Power Series § Approximating an arbitrary nth-degree polynomial Computer

Chebyshev Polynomials and Economization of Power Series § Approximating an arbitrary nth-degree polynomial Computer Networks Research Lab. 14/17

Rational Function Approximation § Pade Rational Approximation Computer Networks Research Lab. 15/17

Rational Function Approximation § Pade Rational Approximation Computer Networks Research Lab. 15/17

Rational Function Approximation Computer Networks Research Lab. 16/17

Rational Function Approximation Computer Networks Research Lab. 16/17

Result § n=5, m=0 – p=1. 0000 -1. 0000 0. 50000000 -0. 16666667 0.

Result § n=5, m=0 – p=1. 0000 -1. 0000 0. 50000000 -0. 16666667 0. 04166667 -0. 00833333 – q=1. 0000 § n=4, m=1 – p=1. 0000 -0. 80000000 0. 30000000 -0. 06666667 0. 00833333 – q=1. 0000 0. 20000000 § n=3, m=2 – p=1. 0000 -0. 60000000 0. 15000000 -0. 01666667 – q=1. 0000 0. 40000000 0. 05000000 Computer Networks Research Lab. 17/17

Result § r(x) = p(x)/q(x) § n=5, m=0 – p(x)=1. 0000 -1. 0000*x+0. 50000000*x^2

Result § r(x) = p(x)/q(x) § n=5, m=0 – p(x)=1. 0000 -1. 0000*x+0. 50000000*x^2 -0. 16666667*x^3+ 0. 04166667*x^4 -0. 00833333*x^5 – q(x)=1. 0000 § n=4, m=1 – p(x)=1. 0000 -0. 80000000*x+0. 30000000*x^2 -0. 06666667*x^3 + 0. 00833333*x^4 – q(x)=1. 0000+0. 20000000*x § n=3, m=2 – p(x)=1. 0000 -0. 60000000*x+0. 15000000*x^2 -0. 01666667*x^3 – q(x)=1. 0000+0. 40000000*x+0. 05000000*x^2 Computer Networks Research Lab. 18/17

Graph Computer Networks Research Lab. 19/17

Graph Computer Networks Research Lab. 19/17

Result [f(x)-r(x)] § n=5, m=0 – 0 0. 0000 0. 0001 0. 0003 0.

Result [f(x)-r(x)] § n=5, m=0 – 0 0. 0000 0. 0001 0. 0003 0. 0007 0. 0012 § n=4, m=1 – 1. 0 e-003 * – 0 -0. 0000 -0. 0002 -0. 0009 -0. 0034 0. 0098 -0. 0236 -0. 0503 -0. 0977 -0. 1761 § n=3, m=2 – 1. 0 e-004 * – 0 0. 0001 0. 0008 0. 0041 0. 0145 0. 0401 0. 0935 0. 1930 0. 3628 0. 6335 Computer Networks Research Lab. 20/17

Rational Function Approximation § Chebyshev Rational Approximation Computer Networks Research Lab. 21/17

Rational Function Approximation § Chebyshev Rational Approximation Computer Networks Research Lab. 21/17

Rational Function Approximation Computer Networks Research Lab. 22/17

Rational Function Approximation Computer Networks Research Lab. 22/17

Result § n=5, m=0 – p=1. 26606600 -1. 13031800 0. 27149500 -0. 04433700 0.

Result § n=5, m=0 – p=1. 26606600 -1. 13031800 0. 27149500 -0. 04433700 0. 00547400 -0. 00054300 – q=1. 0000 § n=4, m=1 – p=1. 15394275 -0. 85220885 0. 15497369 -0. 01686273 0. 00102207 – q=1. 0000 0. 19839240 § n=3, m=2 – p=1. 05526480 -0. 61301701 0. 07747850 -0. 00450556 – q=1. 0000 0. 37833060 0. 02221579 Computer Networks Research Lab. 23/17

Graph Computer Networks Research Lab. 24/17

Graph Computer Networks Research Lab. 24/17

Result [f(x)-r(x)] § n=5, m=0 – 1. 0 e-004 * – -0. 4500 -0.

Result [f(x)-r(x)] § n=5, m=0 – 1. 0 e-004 * – -0. 4500 -0. 3517 -0. 1315 0. 1357 0. 3529 0. 4266 0. 3010 -0. 0020 -0. 3362 -0. 3792 0. 4244 § n=4, m=1 – 1. 0 e-005 * – 0. 8870 0. 8399 0. 5231 0. 0633 -0. 3753 -0. 6349 -0. 6114 -0. 3045 0. 1338 0. 3510 -0. 2506 § n=3, m=2 – 1. 0 e-005 * – -0. 2137 0. 2684 0. 6582 0. 8495 0. 7804 0. 4524 -0. 0557 -0. 5787 -0. 8582 -0. 5410 0. 8206 Computer Networks Research Lab. 25/17

Result [f(x)-r(x)] § Pade – n=5, m=0 • 0 0. 0000 0. 0001 0.

Result [f(x)-r(x)] § Pade – n=5, m=0 • 0 0. 0000 0. 0001 0. 0003 0. 0007 0. 0012 – n=4, m=1 • 1. 0 e-003 * • 0 -0. 0000 -0. 0002 -0. 0009 -0. 0034 -0. 0098 -0. 0236 -0. 0503 -0. 0977 -0. 1761 – n=3, m=2 • 1. 0 e-004 * • 0 0. 0001 0. 0008 0. 0041 0. 0145 0. 0401 0. 0935 0. 1930 0. 3628 0. 6335 § Chebyshev – n=5, m=0 • 1. 0 e-004 * • -0. 4500 -0. 3517 -0. 1315 0. 1357 0. 3529 0. 4266 0. 3010 -0. 0020 -0. 3362 -0. 3792 0. 4244 – n=4, m=1 • • 1. 0 e-005 * 0. 8870 0. 8399 0. 5231 0. 0633 -0. 3753 -0. 6349 -0. 6114 -0. 3045 0. 6582 0. 8495 0. 1338 0. 3510 -0. 2506 – n=3, m=2 • • 1. 0 e-005 * -0. 2137 0. 2684 Computer Networks Research Lab. 0. 7804 0. 4524 -0. 0557 -0. 5787 -0. 8582 -0. 5410 0. 8206 26/17

Trigonometric Polynomial Approximation § Trigonometric Polynomial – All linear combinations of the functions §

Trigonometric Polynomial Approximation § Trigonometric Polynomial – All linear combinations of the functions § Fourier series Computer Networks Research Lab. 27/17