Chapter 7 SteadyState Errors 7 1 Introduction 3

  • Slides: 34
Download presentation
Chapter 7 Steady-State Errors 穩態誤差

Chapter 7 Steady-State Errors 穩態誤差

7. 1 Introduction • 控制系統設計 3規格: Transient response 暫態反應 (Tp , Ts , Tr

7. 1 Introduction • 控制系統設計 3規格: Transient response 暫態反應 (Tp , Ts , Tr , %OS ) Stability 穩定度 Steady-state errors 穩態誤差, e(∞) • System discussed: stable system only.

 • 討論 3類系統的控制誤 差 位置控制; 等速度控制; 等加速度控制。 Figure 7. 1 Test inputs for

• 討論 3類系統的控制誤 差 位置控制; 等速度控制; 等加速度控制。 Figure 7. 1 Test inputs for steady-state error analysis and design vary with target type

 • 3 Inputs (即 3種指令) : Step input(位置) ;Ramp input(等速度) ;Parabolic input(等加速度) 位置控制指令

• 3 Inputs (即 3種指令) : Step input(位置) ;Ramp input(等速度) ;Parabolic input(等加速度) 位置控制指令 等速度控制指令 等加速度控制指令 Table 7. 1 Test waveforms for evaluating steady-state errors of position control systems

Figure 7. 2 Steady-state error e(∞) a. step input; output 1: e(∞)=0 output 2:

Figure 7. 2 Steady-state error e(∞) a. step input; output 1: e(∞)=0 output 2: e(∞)=constant b. ramp input output 1: e(∞)=0 output 2: e(∞)= constant output 3: e(∞)= ∞ unstable

Error 定義: e(t) = Input (t) - Output (t) E(s) = R(s) – C(s)

Error 定義: e(t) = Input (t) - Output (t) E(s) = R(s) – C(s) • Steady-state error 定義: e(∞) = Input (∞) - Output (∞) at time domain e(∞) = lims→ 0 s E(s) (by final value theorem)

Figure 7. 4 e(∞) 由system configuration and input 決定: a. finite steady-state error for

Figure 7. 4 e(∞) 由system configuration and input 決定: a. finite steady-state error for a step input; Csteady-state = K esteady-state K↑ esteady-state ↓ esteady-state = 0 → impossible b. zero steady-state error for step input esteady-state = 0 (∵ 系統具積分器)

7. 2 Steady-State Error for Unity Feedback Systems (case 1) 1/2 • E(s) =

7. 2 Steady-State Error for Unity Feedback Systems (case 1) 1/2 • E(s) = R(s) – C(s) where C (s) = G(s)E(s) → E(s) = R(s)/(1 + G(s)) 註:e(∞) 由system configuration and input 決定 G(s) R(s)

7. 2 Steady-State Error for Unity Feedback Systems (case 1) 2/2 • E(s) =

7. 2 Steady-State Error for Unity Feedback Systems (case 1) 2/2 • E(s) = R(s) – C(s) where C (s) = G(s)E(s) → E(s) = R(s)/(1 + G(s)) → e(∞) = lims→ 0 S E(s) or e(∞) = lims→ 0 S R(s)/(1 + G(s)) 註:Steady-State Error

7. 2 Steady-State Error for Unity Feedback Systems (case 2) • E(s) = R(s)

7. 2 Steady-State Error for Unity Feedback Systems (case 2) • E(s) = R(s) – C(s) where C (s) = T(s)R(s) → E(s) = R(s) [1 - T(s)] → e(∞) = lims→ 0 S E(s) or e(∞) = lims→ 0 S R(s)[1 - T(s)] e(∞) 由system configuration and input 決定

Figure 7. 8 Feedback control system for defining system 定義 of System Type: n=0

Figure 7. 8 Feedback control system for defining system 定義 of System Type: n=0 Type 0 system n=1 Type 1 system n=2 Type 2 system type

※ 求 esteady-state under 3 input signals 1/4 • For step input R(s)=1/S e(∞)

※ 求 esteady-state under 3 input signals 1/4 • For step input R(s)=1/S e(∞) = lims→ 0 S R(s)/(1 + G(s)) ←公式 = lims→ 0 S (1/S)/(1 + G(s)) = lims→ 0 1/(1 + G(s)) = 1/(1 + lims→ 0 G(s)) if wish e(∞) = 0 → then lims→ 0 G(s) = ∞

※ 求 esteady-state under 3 input signals • For step input (續) e(∞) =

※ 求 esteady-state under 3 input signals • For step input (續) e(∞) = 1/(1 + lims→ 0 G(s)) if wish e(∞) = 0 → then lims→ 0 G(s) = ∞ if n≧ 1 for • n≧ 1 stands for 1 integrator in the forward path i. e. system type ≧ 1 to derive e(∞) = 0 2/4

※ 求 esteady-state under 3 input signals • For ramp input R(s)=1/S 2 e(∞)

※ 求 esteady-state under 3 input signals • For ramp input R(s)=1/S 2 e(∞) = lims→ 0 S R(s)/(1 + G(s)) = lims→ 0 S (1/S 2)/(1 + G(s)) = lims→ 0 1/S(1 + G(s)) = 1/ if wish lims→ 0 SG(s) e(∞) = 0 lims→ 0 s. G(s) → then lims→ 0 SG(s) = ∞ if n≧ 2 for • n≧ 2 stands for 2 integrators in the forward path i. e. system type ≧ 2 to derive e(∞) = 0 3/4

※ 求 esteady-state under 3 input signals • For parabolic input R(s)=1/S 3 e(∞)

※ 求 esteady-state under 3 input signals • For parabolic input R(s)=1/S 3 e(∞) = lims→ 0 S R(s)/(1 + G(s)) = lims→ 0 S (1/S 3)/(1 + G(s)) = lims→ 0 1/ S 2(1 + G(s)) = 1/ lims→ 0 s 2 G(s) if wish e(∞) = 0 → then lims→ 0 s 2 G(s) = ∞ if n≧ 3 for • n≧ 3 stands for 3 integrators in the forward path i. e. system type ≧ 3 to derive e(∞) = 0 4/4

公式彙總 指令不同 求 esteady-state 公式不同 • For step input R(s)=1/S e(∞) = 1/(1 +

公式彙總 指令不同 求 esteady-state 公式不同 • For step input R(s)=1/S e(∞) = 1/(1 + lims→ 0 G(s)) • For ramp input R(s)=1/S 2 e(∞) = 1/ lims→ 0 SG(s) • For parabolic input R(s)=1/S 3 e(∞) = 1/ lims→ 0 s 2 G(s)

Example 7. 2 不同指令下 求 esteady-state Figure 7. 5 Feedback control system for system

Example 7. 2 不同指令下 求 esteady-state Figure 7. 5 Feedback control system for system with no integrator type 0 系統 R(s) = 5 u(t) = 5/S e(∞) = 5/(1 + lims→ 0 G(s)) = 5/21 R(s) = 5 tu(t) = 5/S 2 e(∞) = 5/ lims→ 0 SG(s) = 1/0 = ∞ R(s) = 5 t 2 u(t) = 10/S 3 e(∞) = 5/ lims→ 0 S 2 G(s) = 1/0 = ∞ type 0系統 只能執行位置控制 產生有限誤差; 無法執行速度及加速度控制

Example 7. 3 Figure 7. 6 Feedback control system for system with no one

Example 7. 3 Figure 7. 6 Feedback control system for system with no one integrator type 1 系統 R(s) = 5 u(t) = 5/S e(∞) = 5/(1 + lims→ 0 G(s)) = 0 R(s)= 5 tu(t) = 5/S 2 e(∞) = 5/ lims→ 0 SG(s) = 1/20 = finite R(s)= 5 t 2 u(t) = 10/S 3 e(∞) = 10/ lims→ 0 S 2 G(s) = 1/0 = ∞ type 1系統 執行位置控制 無誤差產生; 執行速度控制 產生有限誤差; 無法執行加速度控制 H. W. : Skill-Assessment Exercise 7. 1

7. 3 Static Error Constants and System Type • 定義: Static Error Constants Kp

7. 3 Static Error Constants and System Type • 定義: Static Error Constants Kp Kv Ka For step input R(s) = 1/s e(∞) = 1/(1 + lims→ 0 G(s)) = 1/1+Kp Kp = lims→ 0 G(s) position error constant For ramp input R(s) =1/s 2 e(∞) = 1/ lims→ 0 SG(s) = 1/Kv Kv = lims→ 0 SG(s) velocity error constant For parabolic input R(s) = 1/s 3 e(∞) = 1/ lims→ 0 s 2 G(s) = 1/Ka Ka = lims→ 0 S 2 G(s) acceleration error constant

Example 7. 4 利用Static Error Constants 求解 Figure 7. 7 Feedback control systems 求3系統之steady-state

Example 7. 4 利用Static Error Constants 求解 Figure 7. 7 Feedback control systems 求3系統之steady-state error? (a) Type 0 system For step input: R(s) = 1/s Kp = lims→ 0 G(s)= 5. 208 e(∞) = 1/ /(1+Kp) = 0. 161 For ramp input: R(s) =1/s 2 Kv = lims→ 0 s. G(s) = 0 e(∞) = 1/Kv = ∞ For parabolic input: R(s) = 1/s 3 e(∞) = 1/Ka = ∞ Ka = lims→ 0 s 2 G(s)=0 1/3

Example 7. 4 Figure 7. 7 Feedback control systems 求3系統之steady-state error? 2/3 (b) Type

Example 7. 4 Figure 7. 7 Feedback control systems 求3系統之steady-state error? 2/3 (b) Type 1 system For step input: R(s) = 1/s Kp = lims→ 0 G(s)= ? /0 = ∞ e(∞) = 1/(1+Kp) = 0 For ramp input: R(s) =1/s 2 Kv = lims→ 0 s. G(s) = 30000/960 =31. 25 e(∞) = 1/Kv = 0. 032 For parabolic input: R(s) = 1/s 3 e(∞) = 1/Ka = ∞ Ka = lims→ 0 s 2 G(s)=0*? =0

Example 7. 4 Figure 7. 7 Feedback control systems 求3系統之steady-state error? (c) Type 2

Example 7. 4 Figure 7. 7 Feedback control systems 求3系統之steady-state error? (c) Type 2 system For step input: R(s) = 1/s Kp = lims→ 0 G(s)= ? /0 = ∞ e(∞) = 1/ (1+Kp) = 0 For ramp input: R(s) =1/s 2 Kv = lims→ 0 s. G(s) = ? /0 = ∞ e(∞) = 1/Kv = 0 For parabolic input: R(s) = 1/s 3 Ka = lims→ 0 s 2 G(s) = 875 e(∞) = 1/Ka = 0. 00114 3/3

Table 7. 2 Relationships between input, system type, static error constants, and steady-state errors

Table 7. 2 Relationships between input, system type, static error constants, and steady-state errors Static Error Constants: Kp Kv Ka 決定系統之 e(∞) ; 其可為 steady-state error 之規格 H. W. : Skill-Assessment Exercise 7. 2

7. 4 Steady-State Error Specifications • Example 7. 5 Given Kv=1000 → draw ?

7. 4 Steady-State Error Specifications • Example 7. 5 Given Kv=1000 → draw ? ? conclusions 1. Stable system 2. Ramp input 3. Type 1 system

 • Example 7. 6 • • Find K=? → e(∞) = 10% Type

• Example 7. 6 • • Find K=? → e(∞) = 10% Type 1 system (已知) 有限的e(∞) → Ramp input (已知) e(∞) = 1/ Kv = 0. 1 → Kv = 10 Kv = lims→ 0 SG(s) = k*5 / 6*7*8 = 10 → k = 672 自修 Skill-Assessment Exercise 7. 3

7. 5 Steady-State Error for Disturbances Figure 7. 11 Feedback control system showing disturbance

7. 5 Steady-State Error for Disturbances Figure 7. 11 Feedback control system showing disturbance • 2 inputs R(s) & D(s) C(s) =� E(s)G 1(s) + D(s) � G 2(s) = E(s)G 1(s)G 2(s) + D(s)G 2(s) E(s) = R(s) – C(s) → R(s) –E(s) = E(s)G 1(s)G 2(s) + D(s)G 2(s) E(s)G 1(s)G 2(s) + E(s) = R(s) – D(s)G 2(s) E(s)(1+G 1(s)G 2(s)) = R(s) – D(s)G 2(s) 1/3

7. 5 Steady-State Error for Disturbances E(s)(1+G 1(s)G 2(s)) = R(s) – D(s)G 2(s)

7. 5 Steady-State Error for Disturbances E(s)(1+G 1(s)G 2(s)) = R(s) – D(s)G 2(s) 2/3

7. 5 Steady-State Error for Disturbances DC gain of G 1(s) • e. D(∞)↓

7. 5 Steady-State Error for Disturbances DC gain of G 1(s) • e. D(∞)↓ (分母變大) if DC gain of G 1(s)↑ or DC gain of G 2(s)↓ 3/3

 • Example 7. 7 Fig. 7. 13 如下 自修 D(s) = step disturbance

• Example 7. 7 Fig. 7. 13 如下 自修 D(s) = step disturbance Find e. D(∞) = ? • H. W. : Skill-Assessment Exercise 7. 4

Figure 7. 12 Figure 7. 11 system rearranged to show disturbance as input and

Figure 7. 12 Figure 7. 11 system rearranged to show disturbance as input and error as output, with R(s) = 0 -C(s) = E(s)

7. 6 Steady-State Error for Nonunity Feedback Systems

7. 6 Steady-State Error for Nonunity Feedback Systems

7. 7 Sensitivity • Defination Examples: 7. 10 7. 11 7. 12 H. W.

7. 7 Sensitivity • Defination Examples: 7. 10 7. 11 7. 12 H. W. : Skill-Assessment Exercise 7. 6

Example 7. 11 Figure 7. 19 Find Se: a = ? Se: k =

Example 7. 11 Figure 7. 19 Find Se: a = ? Se: k = ? R(s) = Ramp input = 1/s 2 → e(∞) = 1/kv = 1/(k/a) = a/k Se: a = � a/(a/k)�� δ(a/k)/δa� = 1 Se: k = � k/(a/k)�� δ(a/k)/δk� = -1