Chapter 4 Molecular Symmetry Dr S M Condren


















































![Vibrational Modes for [Pt. Cl 4]-2 For non-linear molecules: 3 N - 6 IR Vibrational Modes for [Pt. Cl 4]-2 For non-linear molecules: 3 N - 6 IR](https://slidetodoc.com/presentation_image_h/eb5ca1310be74120ee2d5105868e2529/image-51.jpg)



- Slides: 54
Chapter 4 Molecular Symmetry Dr. S. M. Condren
Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • • • Identity Proper axis of rotation Mirror planes Center of symmetry Improper axis of rotation Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Identity => E Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Proper axis of rotation => Cn – where – – n = 2, 180 o rotation n = 3, 120 o rotation n = 4, 90 o rotation n = 6, 60 o rotation n = , (1/ )o rotation • principal axis of rotation, Cn Dr. S. M. Condren
2 -Fold Axis of Rotation Dr. S. M. Condren
3 -Fold Axis of Rotation Dr. S. M. Condren
Rotations for a Trigonal Planar Molecule Dr. S. M. Condren
Symmetry Elements and Symmetry Operations Mirror planes => sh => mirror plane perpendicular to a principal axis of rotation sv => mirror plane containing principal axis of rotation sd => mirror plane bisects dihedral angle made by the principal axis of rotation and two adjacent C 2 axes perpendicular to principal rotation axis Dr. S. M. Condren
Mirrors sv sv Cl Cl sh I sd Cl Dr. S. M. Condren
Rotations and Mirrors in a Bent Molecule Dr. S. M. Condren
Benzene Ring Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Center of symmetry => i Dr. S. M. Condren
Center of Inversion Dr. S. M. Condren
Inversion vs. C 2 Dr. S. M. Condren
Symmetry Elements and Symmetry Operations • Improper axis of rotation => Sn – rotation about n axis followed by inversion through center of symmetry Dr. S. M. Condren
Improper Rotation in a Tetrahedral Molecule Dr. S. M. Condren
S 1 and S 2 Improper Rotations Dr. S. M. Condren
Successive C 3 Rotations on Trigonal Pyramidal Molecule Dr. S. M. Condren
Linear Molecules Dr. S. M. Condren
Selection of Point Group from Shape • first determine shape using Lewis Structure and VSEPR Theory • next use models to determine which symmetry operations are present • then use the flow chart Figure 3. 9, Pg. 81 text to determine the point group Dr. S. M. Condren
Dr. S. M. Condren
Decision Tree Dr. S. M. Condren
Selection of Point Group from Shape 1. determine the highest axis of rotation 2. check for other non-coincident axis of rotation 3. check for mirror planes Dr. S. M. Condren
H 2 O and NH 3 Dr. S. M. Condren
Dr. S. M. Condren
Dr. S. M. Condren
Geometric Shapes Dr. S. M. Condren
Orbital Symmetry, pz z E + C 2 v X(E) = +1 - + + C 2(z) x y sv(xz) sv(yz) + - - X(sv(xz)) = +1 + - X(sv(xz)) = +1 Dr. S. M. Condren X(C 2(z)) = +1
Orbital Symmetry, py - z E X(E) = +1 + - + C 2(z) x + sv(xz) y C 2 v + - sv(yz) X(sv(xz)) = -1 + X(C 2(z)) = -1 X(sv(xz)) = +1 Dr. S. M. Condren
Orbital Symmetry, px z - E y + + X(E) = +1 C 2(z) x sv(xz) + - sv(yz) + Dr. S. M. Condren C 2 v - + X(C 2(z)) = -1 X(s(xz)) = +1 X(sv(xz)) = -1
Water, C 2 v Point Group Translational motion in y z y x o o H H sv(xz) “asymmetric” => -1 Dr. S. M. Condren
Water, C 2 v Point Group Translational motion in y z o H H y x o H H sv(yz) “symmetric” => +1 Dr. S. M. Condren
Water, C 2 v Point Group Translational motion in y z y C 2(z) x O H H “asymmetric” = - 1 Dr. S. M. Condren
Water, C 2 v Point Group Translational motion in y Representation: E C 2(z) G 3 +1 -1 Dr. S. M. Condren sv(xz) sv(yz) -1 +1
Water, C 2 v Point Group Rotation about z axis z O r. H a Hbs r - movement out of plane towards observer s - movement out of plane away from observer a, b - labeling to distinguish hydrogens before and after symmetry operations Dr. S. M. Condren
Water, C 2 v Point Group Rotation about z axis z O r. H a E Hbs O r. H +1 Dr. S. M. Condren a H bs
Water, C 2 v Point Group Rotation about z axis z O r. H a C 2 z Hbs O r. H +1 Dr. S. M. Condren b Ha s
Water, C 2 v Point Group Rotation about z axis z O r. H a O sv(xz) Hbs s. H x -1 Dr. S. M. Condren b Ha r
Water, C 2 v Point Group Rotation about z axis z O r. H a sv(yz) Hbs O s. H -1 Dr. S. M. Condren a Hbr
Water, C 2 v Point Group Rotation about z axis Representation E C 2(z) G 4 +1 +1 Dr. S. M. Condren sv(xz) sv(yz) -1 -1
Water, C 2 v Point Group Representations: Rotation E C 2(z) G 4 +1 +1 Dr. S. M. Condren sv(xz) sv(yz) -1 -1
Water, C 2 v Point Group Representation: Translation E C 2(z) G 1 +1 +1 G 2 +1 -1 G 3 +1 -1 sv(xz) sv(yz) +1 +1 Tz +1 -1 Tx -1 +1 Ty Dr. S. M. Condren
Water, C 2 v Point Group Representation: Rotation E C 2(z) G 4 +1 +1 G 5 +1 -1 G 6 +1 -1 sv(xz) sv(yz) -1 -1 Rz +1 -1 Ry -1 +1 Rx Dr. S. M. Condren
Water, C 2 v Point Group Character Table E C 2(z) A 1 +1 +1 A 2 +1 +1 B 1 +1 -1 B 2 +1 -1 sv(xz) sv(yz) +1 +1 -1 -1 +1 Dr. S. M. Condren Tz Rz R y, T x Rx, Ty G 1 G 4 G 2 , G 5 G 3, G 6
Dr. S. M. Condren
Vibrational Modes in CO 2 For linear molecules: 3 N - 5 IR fundamentals Dr. S. M. Condren
Vibrational Modes in SO 2 For non-linear molecules: 3 N - 6 IR fundamentals Dr. S. M. Condren
Vibration Modes for SO 3 For non-linear molecules: 3 N - 6 IR fundamentals Dr. S. M. Condren
Vibrational Modes for CH 4 For non-linear molecules: 3 N - 6 IR fundamentals Dr. S. M. Condren
Vibrational Modes for [Pt. Cl 4]-2 For non-linear molecules: 3 N - 6 IR fundamentals Dr. S. M. Condren
Enantiomer Pairs Dr. S. M. Condren
Enantiomer Pairs Dr. S. M. Condren
Polarimeter Dr. S. M. Condren