Chapter 4 LAN Redundancy Switched Networks PresentationID 2008

  • Slides: 51
Download presentation
Chapter 4: LAN Redundancy Switched Networks Presentation_ID © 2008 Cisco Systems, Inc. All rights

Chapter 4: LAN Redundancy Switched Networks Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 1

Chapter 4 4. 0 Introduction 4. 1 Spanning Tree Concepts 4. 2 Varieties of

Chapter 4 4. 0 Introduction 4. 1 Spanning Tree Concepts 4. 2 Varieties of Spanning Tree Protocols 4. 3 Spanning Tree Configuration 4. 4 First-Hop Redundancy Protocols 4. 5 Summary

Chapter 4: Objectives § Issues with a redundant network § IEEE 802. 1 D

Chapter 4: Objectives § Issues with a redundant network § IEEE 802. 1 D STP operation § Different spanning tree varieties § PVST+ operation § Rapid PVST+ § Configure PVST+ and Rapid PVST+ § STP configuration issues § Purpose and operation of first hop redundancy protocols § Different varieties of first-hop redundancy protocols § IOS commands to verify HSRP and GLBP implementations

4. 1 Spanning Tree Concepts Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved.

4. 1 Spanning Tree Concepts Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 4

Redundancy in a Switched Network Role of redundancy in a hierarchical network Cesta z

Redundancy in a Switched Network Role of redundancy in a hierarchical network Cesta z PC 1 do PC 4 normálně vede přes Trunk 1. Když ten se pokazí, jede se přes redundantní (= navíc) cestu Trunk 2 –> Trunk 3. Když se Trunk 1 vzpamatuje, opět se začne používat.

Redundancy in a Switched Network Cesta z PC 1 do PC 4: 1) Všechno

Redundancy in a Switched Network Cesta z PC 1 do PC 4: 1) Všechno funguje

Redundancy in a Switched Network Náhradní cesta 2) Pokazí se přístup do Distribution vrstvy

Redundancy in a Switched Network Náhradní cesta 2) Pokazí se přístup do Distribution vrstvy

Redundancy in a Switched Network Náhradní cesta 3) Pokazí se spoj mezi Distribution a

Redundancy in a Switched Network Náhradní cesta 3) Pokazí se spoj mezi Distribution a Core

Redundancy in a Switched Network Náhradní switch 4) Pokazí se switch ve vrstvě Distribution

Redundancy in a Switched Network Náhradní switch 4) Pokazí se switch ve vrstvě Distribution

Redundancy in a Switched Network Náhradní switch 5) Pokazí se switch ve vrstvě Core

Redundancy in a Switched Network Náhradní switch 5) Pokazí se switch ve vrstvě Core

Redundancy in a Switched Network § Redundancy can disable a network § Zálohování může

Redundancy in a Switched Network § Redundancy can disable a network § Zálohování může odstavit síť Ethernet frames do not have a time to live (TTL) like IP packets traversing routers. Ethernetové rámce nemají počítadla TTL, která by je po nějaké době obíhání zlikvidovala. Proto rámce mohou ve smyčkách obíhat donekonečna a stále se množit.

Redundancy in a Switched Network Možné problémy v zálohované síti • Broadcast storms –

Redundancy in a Switched Network Možné problémy v zálohované síti • Broadcast storms – při broadcastu se rámce ve smyčkách množí, až dojde k zahlcení sítě. • Špatně naučené polohy účastníků – switch dostane frame ze správné strany, potom také smyčkou z druhé strany. • Dvakrát doručené rámce – PC 1 posílá rámec PC 4. S 2 ještě nezná MAC adresu PC 4, proto rámec rozešle jako broadcast. Ten potom dojde jednou přes Trunk 1, podruhé přes Trunk 2 a Trunk 3.

Redundancy in a Switched Network Otázka: Proč v síti s přepínači odpínáme záložní spoje,

Redundancy in a Switched Network Otázka: Proč v síti s přepínači odpínáme záložní spoje, místo abychom je využili a zvýšili tak propustnost sítě v daném směru, jako to dělají směrovače? Odpověď: Směrovače mají mnohem lepší ponětí o topologii celé sítě. Používají chytré techniky (Split horizon, Poison reverse, Holddown timer), které zabraňují vzniku smyček. Když směrovač neví, co s paketem, pošle jej do default route, tj. vždycky jedním a jediným směrem. Když přepínač neví, co s framem, rozprskne jej jako broadcast a tím nastartuje jeho množení. Kromě toho, když už ke kolování paketu mezi směrovači dojde, poslední záchranou je omezený počet hopů (RIP: 16), nebo počítadlo TTL, které způsobí zabití a zahození bloudícího paketu. To přepínače neznají. Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 13

STP Operation Spanning-Tree Algorithm: Introduction § STP ensures that there is only one logical

STP Operation Spanning-Tree Algorithm: Introduction § STP ensures that there is only one logical path between all destinations on the network by intentionally blocking redundant paths that could cause a loop. § A port is considered blocked when user data is prevented from entering or leaving that port. This does not include bridge protocol data unit (BPDU) frames that are used by STP to prevent loops. § The physical paths still exist to provide redundancy, but these paths are disabled to prevent the loops from occurring. § If the path is ever needed to compensate for a network cable or switch failure, STP recalculates the paths and unblocks the necessary ports to allow the redundant path to become active.

STP Operation Spanning-Tree Algorithm: Port Roles

STP Operation Spanning-Tree Algorithm: Port Roles

STP Operation Spanning-Tree Algorithm: Root Bridge

STP Operation Spanning-Tree Algorithm: Root Bridge

STP Operation Spanning-Tree Algorithm: Path Cost

STP Operation Spanning-Tree Algorithm: Path Cost

STP Operation 802. 1 D BPDU Frame Format

STP Operation 802. 1 D BPDU Frame Format

STP Operation BPDU Propagation and Process

STP Operation BPDU Propagation and Process

STP Operation Extended System ID

STP Operation Extended System ID

4. 2 Varieties of Spanning Tree Protocols Presentation_ID © 2008 Cisco Systems, Inc. All

4. 2 Varieties of Spanning Tree Protocols Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 21

STP Overview List of Spanning Tree Protocols § STP or IEEE 802. 1 D-1998

STP Overview List of Spanning Tree Protocols § STP or IEEE 802. 1 D-1998 § PVST+ § IEEE 802. 1 D-2004 § Rapid Spanning Tree Protocol (RSTP) or IEEE 802. 1 w § Rapid PVST+ § Multiple Spanning Tree Protocol (MSTP) or IEEE 802. 1 s

STP Overview Spanning Tree Protocol Characteristics

STP Overview Spanning Tree Protocol Characteristics

PVST+ Overview of PVST+ Networks running PVST+ have these characteristics: § A network can

PVST+ Overview of PVST+ Networks running PVST+ have these characteristics: § A network can run an independent IEEE 802. 1 D STP instance for each VLAN in the network. § Optimum load balancing can result. § One spanning-tree instance for each VLAN maintained can mean a considerable waste of CPU cycles for all switches in the network (in addition to the bandwidth used for each instance to send its own BPDU).

PVST+ Port States and PVST+ Operation STP introduces the five port states: § Blocking

PVST+ Port States and PVST+ Operation STP introduces the five port states: § Blocking § Listening § Learning § Forwarding § Disabled

PVST+ Extended System ID and PVST+ Operation § In a PVST+ environment, the extended

PVST+ Extended System ID and PVST+ Operation § In a PVST+ environment, the extended switch ID ensures each switch has a unique BID for each VLAN. § For example, the VLAN 2 default BID would be 32770 (priority 32768, plus the extended system ID of 2).

Rapid PVST+ Overview of Rapid PVST+ § RSTP is the preferred protocol for preventing

Rapid PVST+ Overview of Rapid PVST+ § RSTP is the preferred protocol for preventing Layer 2 loops in a switched network environment. § Cisco-proprietary enhancements to 802. 1 D, such as Uplink. Fast and Backbone. Fast, are not compatible with RSTP. § RSTP (802. 1 w) supersedes STP (802. 1 D) while retaining backward compatibility § RSTP keeps the same BPDU format as IEEE 802. 1 D, except that the version field is set to 2 to indicate RSTP, and the flags field uses all 8 bits. § RSTP is able to actively confirm that a port can safely transition to the forwarding state without relying on any timer configuration.

Rapid PVST+ RSTP BPDU

Rapid PVST+ RSTP BPDU

Rapid PVST+ Edge Ports

Rapid PVST+ Edge Ports

Rapid PVST+ Link Types

Rapid PVST+ Link Types

4. 3 Spanning Tree Configuration Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved.

4. 3 Spanning Tree Configuration Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 31

PVST+ Configuration Catalyst 2960 Default Configuration

PVST+ Configuration Catalyst 2960 Default Configuration

PVST+ Configuration Configuring and Verifying the Bridge ID

PVST+ Configuration Configuring and Verifying the Bridge ID

PVST+ Configuration Port. Fast and BPDU Guard

PVST+ Configuration Port. Fast and BPDU Guard

PVST+ Configuration PVST+ Load Balancing

PVST+ Configuration PVST+ Load Balancing

Rapid PVST+ Configuration Spanning-Tree Mode

Rapid PVST+ Configuration Spanning-Tree Mode

STP Configuration Issues Analyzing the STP Topology

STP Configuration Issues Analyzing the STP Topology

STP Configuration Issues Expected Topology vs. Actual Topology

STP Configuration Issues Expected Topology vs. Actual Topology

STP Configuration Issues Overview of Spanning-Tree Status

STP Configuration Issues Overview of Spanning-Tree Status

STP Configuration Issues Spanning-Tree Failure Consequences

STP Configuration Issues Spanning-Tree Failure Consequences

STP Configuration Issues Repairing a Spanning-Tree Problem § One way to correct spanning-tree failure

STP Configuration Issues Repairing a Spanning-Tree Problem § One way to correct spanning-tree failure is to manually remove redundant links in the switched network, either physically or through configuration, until all loops are eliminated from the topology. § Before restoring the redundant links, determine and correct the cause of the spanning-tree failure. § Carefully monitor the network to ensure that the problem is fixed.

4. 4 First-Hop Redundancy Protocols Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved.

4. 4 First-Hop Redundancy Protocols Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 42

Concept of First-Hop Redundancy Protocols Default Gateway Limitations

Concept of First-Hop Redundancy Protocols Default Gateway Limitations

Concept of First-Hop Redundancy Protocols Router Redundancy

Concept of First-Hop Redundancy Protocols Router Redundancy

Concept of First-Hop Redundancy Protocols Steps for Router Failover

Concept of First-Hop Redundancy Protocols Steps for Router Failover

Varieties of First-Hop Redundancy Protocols § Hot Standby Router Protocol (HSRP) § HSRP for

Varieties of First-Hop Redundancy Protocols § Hot Standby Router Protocol (HSRP) § HSRP for IPv 6 § Virtual Router Redundancy Protocol version 2 (VRRPv 2) § VRRPv 3 § Gateway Load Balancing Protocol (GLBP) § GLBP for IPv 6 § ICMP Router Discovery Protocol (IRDP)

FHRP Verification HSRP Verification

FHRP Verification HSRP Verification

FHRP Verification GLBP Verification

FHRP Verification GLBP Verification

4. 5 Summary Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

4. 5 Summary Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 49

Chapter 4: Summary § IEEE 802. 1 D is implemented on Cisco switches on

Chapter 4: Summary § IEEE 802. 1 D is implemented on Cisco switches on a per-VLAN basis in the form of PVST+. This is the default configuration on Cisco switches. § RSTP can be implemented on Cisco switches on a per-VLAN basis in the form of Rapid PVST+. § With PVST+ and Rapid PVST+, root bridges can be proactively configured to enable spanning tree load balancing. § First-hop redundancy protocols, such as HSRP, VRRP, and GLBP provide alternate default gateways for hosts in the switched environment.

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 51

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential 51