Chapter 3 Markov Chain Monte Carlo Metropolis and

  • Slides: 17
Download presentation
Chapter 3 Markov Chain Monte Carlo: Metropolis and Glauber Chains Yael Harel

Chapter 3 Markov Chain Monte Carlo: Metropolis and Glauber Chains Yael Harel

Contents • Reminders from previous weeks • Definitions • Theorems • Motivation • Metropolis

Contents • Reminders from previous weeks • Definitions • Theorems • Motivation • Metropolis Chains • What is it? • Construction over symmetric matrices • Example • Construction over asymmetric matrices • Example • Glauber Dynamics • What is it? • Examples • Metropolis Chains VS Glauber Dynamics • Summary

Reminders from previous weeks

Reminders from previous weeks

Reminders from previous weeks

Reminders from previous weeks

Motivation e asy d ult c i iff

Motivation e asy d ult c i iff

Metropolis Chains

Metropolis Chains

Metropolis Chains

Metropolis Chains

Metropolis Chains

Metropolis Chains

Metropolis Chains

Metropolis Chains

Glauber Dynamics (Gibbes sampler)

Glauber Dynamics (Gibbes sampler)

Glauber Dynamics (Gibbes sampler) 0 0

Glauber Dynamics (Gibbes sampler) 0 0

Glauber Dynamics (Gibbes sampler) v is vacant If x(v)=1 y=x

Glauber Dynamics (Gibbes sampler) v is vacant If x(v)=1 y=x

Metropolis Chains VS Glauber Dynamics

Metropolis Chains VS Glauber Dynamics

Metropolis Chains VS Glauber Dynamics

Metropolis Chains VS Glauber Dynamics

Metropolis Chains VS Glauber Dynamics

Metropolis Chains VS Glauber Dynamics

Summary Chain construction with a given stationary distribution • Metropolis – given a transition

Summary Chain construction with a given stationary distribution • Metropolis – given a transition matrix. • Glauber – without any transition matrix. Can be equal or similar Example – q-coloring • NP-complete problem #proper configurations – unknown. • Construct a chain with the uniform stationary distribution. • Simulation: • For i=1 to N • Run the chain T iterations • Save the result • Learn how does the configurations distribute In the next weeks: How to find T?

Thank you

Thank you