Chapter 3 Determinants and Diagonalization OUR GOAL o









![Examples • o det(c. A) = cndet(A) o det(Ak) = [det(A)]k Examples • o det(c. A) = cndet(A) o det(Ak) = [det(A)]k](https://slidetodoc.com/presentation_image_h/25d26242f4ab1513afc1d95b594b0e47/image-10.jpg)






















- Slides: 32

Chapter 3 Determinants and Diagonalization

OUR GOAL o How to find the determinant of a square matrix? o How to diagonalize a square matrix?

Determinant of a square matrix •


Example •

The determinant of 3 x 3 matrix (only) - - - + + + -3 -2 2 0 2 1

Definition If A is an mxm matrix then the determinant of A is defined by • det. A=ai 1 ci 1(A)+ai 2 ci 2(A)+…+aimcim(A) • or det. A= a 1 jc 1 j(A)+a 2 jc 2 j(A)+…+amjcmj(A)

The determinant of triangular matrices • Determinant = a 11. a 22…ann

Examples • det(A. B) = det(A). det(B) det(A+B) det(A) + det(B)
![Examples o detc A cndetA o detAk detAk Examples • o det(c. A) = cndet(A) o det(Ak) = [det(A)]k](https://slidetodoc.com/presentation_image_h/25d26242f4ab1513afc1d95b594b0e47/image-10.jpg)
Examples • o det(c. A) = cndet(A) o det(Ak) = [det(A)]k

Properties For all nxn matrices A, B: o o o det(A. B) = det(A). det(B) det(k. A) = kndet(A) det(AT) = det(A) det(A-1) = 1/det(A) det(Ak) = [det(A)]k

The determinant of triangular matrices • Determinant = a 11. a 22…ann

Examples •

Examples •

Determinants and elementary operators 1. Đổi chỗ 2 dòng (hoặc 2 cột) cho nhau, matrix thu được và matrix ban đầu có định thức trái dấu nhau. // ri rj 2. Nhân một dòng (hoặc cột) với một số k matrix thu được có định thức gấp k lần det của matrix cũ. //kri 3. Nếu nhân c vào dòng ri rồi cộng vào dòng rj (hoặc thực hiện trên cột) định thức không thay đổi. // cri + rj

Examples

Next • det(A) and existence of A-1 o A is invertible det(A) 0 o A formula for finding A-1

(i, j)-cofactor • row 2 column 3 Do yourself. Find all cofactors cij of the matrix A

How to find A-1? •

Adjugate matrix • The adjugate matrix of A is the matrix • For example,

Theorem of Adjugate Formula If A is any square matrix, then • A(adj. A)=(det. A)I • In particular, if det. A≠ 0 then A is invertible and • For example, Note that […]

Diagonal matrices • An nxn matrix is called diagonal matrix if all its entries off the main diagonal are zeros • For example

Diagonalization •

How to find P? Đa thức đặc trưng (characteristic polynomial) Các giá trị riêng (eigenvalues) của A Nếu t≠ 0 thì X=(-4 t, t) được gọi là véc tơ riêng (eigenvectors) ứng với giá trị riêng x=3 Nếu t≠ 0 thì X=(t, t) được gọi là véc tơ riêng ứng với x=-2 Relationship between eigenvalues and eigenvectors : eigenvalue (a number) X: -eigenvector (remember: vector X≠ 0) ( I-A)X=0 AX= X

Example Find the eigenvalues ang eigenvectors and then diagonalize the matrix The characteristic polynomial of A is

Use the fact: if x 1, x 2, …, xm are eigenvalues of an nxn matrix , then det(A) = x 1. x 2…xm First, det(A) = 4 We know that det(A) = the product of eigenvalues 4 = 1. 2. 2 f // x 1=1, x 2 = x 3 = 2.

Use the fact: if X is an eigenvector of a matrix A corresponding an eigenvalue k, then AX = k. X

When is A diagonalizable? Theorem A is diagonalizable iff every eigenvalue of multiplicity m yields exactly m basic eigenvectors, that is, iff the general solution of the system ( I-A)X=0 has exactly m parameters. For example,

When is A diagonalizable?

When is A diagonalizable?

SUMMARY o Determinants of nxn matrices o Properties: o det(AB) = det(A)det(B) o det(c. A) = cndet(A) o det(AT) = det(A) o det(A-1) = 1/det(A) o Determinants and elementary operators o Determinants and inverse of a matrix o An nxn matrix has an inverse if and only if det(A) 0 o A-1 = adj(A)/det. A o Diagonalization o Characteristic polynomial o Eigenvalues o Eigenvectors

THANKS