Chapter 20 RapidPrototyping Operations Manufacturing Engineering Technology Fifth

  • Slides: 18
Download presentation
Chapter 20 Rapid-Prototyping Operations Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and

Chapter 20 Rapid-Prototyping Operations Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Parts Made by Rapid-Prototyping (c) (a) (b) Figure 20. 1 Examples of parts made

Parts Made by Rapid-Prototyping (c) (a) (b) Figure 20. 1 Examples of parts made by rapid-prototyping processes: (a) selection of parts from fused-deposition modeling; (b) stereolithography model of cellular phone; and (c) selection of parts form three-dimensional printing. Source: Courtesy of Stratasys, Inc. , (b) and (c) Courtesy of 3 D Systems, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Characteristics of Additive Rapid-Prototyping Technologies Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian

Characteristics of Additive Rapid-Prototyping Technologies Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Mechanical Properties of Selected Materials for Rapid Prototyping Manufacturing, Engineering & Technology, Fifth Edition,

Mechanical Properties of Selected Materials for Rapid Prototyping Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Computational Steps in Rapid Prototyping Figure 20. 2 The computational steps in producing a

Computational Steps in Rapid Prototyping Figure 20. 2 The computational steps in producing a stereolithography file. (a) Three-dimensional description of each part. (b) The part is divided into slices (only one in 10 is shown). (c) Support material is planned. (d) A set of tool directions is determined to manufacture each slice. Also shown is the extruder path at section A-A from (c) for a fused-depositionmodeling operation. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Fused-Deposition-Modeling Figure 20. 3 (a) Schematic illustration of the fused-deposition-modeling process. (b) The FDM

Fused-Deposition-Modeling Figure 20. 3 (a) Schematic illustration of the fused-deposition-modeling process. (b) The FDM 5000, a fused-deposition-modeling machine. Source: Courtesy of Stratysis, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Support Materials and Structures in Parts Figure 20. 4 (a) A part with a

Support Materials and Structures in Parts Figure 20. 4 (a) A part with a protruding section which requires support material. (b) Common support structures used in rapid-prototyping machines. Source: P. F. Jacobs, Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Society of Manufacturing Engineers, 1992. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Stereolithography Figure 20. 5 Schematic illustration of the stereolithography process. Manufacturing, Engineering & Technology,

Stereolithography Figure 20. 5 Schematic illustration of the stereolithography process. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Two-Button Computer Mouse Figure 20. 6 A two-button computer mouse. Source: Courtesy of 3

Two-Button Computer Mouse Figure 20. 6 A two-button computer mouse. Source: Courtesy of 3 D Systems, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Selective-Laser-Sintering Figure 20. 7 Schematic illustration of the selective-laser-sintering process. Source: After C. Deckard

Selective-Laser-Sintering Figure 20. 7 Schematic illustration of the selective-laser-sintering process. Source: After C. Deckard and P. F. Mc. Clure. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Three-Dimensional-Printing Figure 20. 8 Schematic illustration of the three-dimensional-printing process. Source: After E. Sachs

Three-Dimensional-Printing Figure 20. 8 Schematic illustration of the three-dimensional-printing process. Source: After E. Sachs and M. Cima. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Three-Dimensional-Printing to Produce Metal Parts Figure 20. 9 Three-dimensional-printing using (a) part-build, (b) sinter,

Three-Dimensional-Printing to Produce Metal Parts Figure 20. 9 Three-dimensional-printing using (a) part-build, (b) sinter, and (c) infiltration steps to produce metal parts. (d) An example of a bronze-infiltrated stainless-steel part produced through three-dimensional printing. Source: Courtesy of Pro. Metal. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Fuselage Fitting Made by Three-Dimensional-Printing (a) (b) Figure 20. 10 A fitting required for

Fuselage Fitting Made by Three-Dimensional-Printing (a) (b) Figure 20. 10 A fitting required for a helicopter fuselage. (a) CAD representation with added dimensions. (b) Dies produced by three-dimensional printing. (c) Final forged workpiece. Source: Courtesy of Pro. Metal. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Laminated-Object-Manufacturing Figure 20. 11 (a) Schematic illustration of the laminated-object-manufacturing process. (b) Crankshaft-part examples

Laminated-Object-Manufacturing Figure 20. 11 (a) Schematic illustration of the laminated-object-manufacturing process. (b) Crankshaft-part examples made by LOM. Source: (a) Courtesy of Helsis, Inc. (b) After L. Wood. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Invisalign Orthodontic Aligners (a) (b) Figure 20. 12 (a) An aligner for orthodontic use

Invisalign Orthodontic Aligners (a) (b) Figure 20. 12 (a) An aligner for orthodontic use manufactured using a combination of rapid tooling and thermoforming. (b) Comparison of conventional orthodontic braces to the use of transparent aligners. Source: Courtesy of Align Technologies, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Manufacturing of Invisalign Orthodontic Aligners (a) (c) (b) Figure 20. 13 The manufacturing sequence

Manufacturing of Invisalign Orthodontic Aligners (a) (c) (b) Figure 20. 13 The manufacturing sequence for Invisalign orthodontic aligners. (a) Creation of a polymer impression of the patient’s teeth. (b) Computer modeling to produce CAD representations of desired tooth profiles. (c) Production of incremental models of desired tooth movement. An aligner is produced by thermoforming a transparent plastic sheet against this model. Source: Courtesy of Align Technologies, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Investment Casting Using Rapid-Prototyped Wax Parts Figure 20. 14 Manufacturing steps for investment casting

Investment Casting Using Rapid-Prototyped Wax Parts Figure 20. 14 Manufacturing steps for investment casting that uses rapid-prototyped wax parts as blanks. This method uses a flask for the investment, but a shell method also can be used. Source: Courtesy of 3 D Systems, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.

Rapid Tooling for a Rear-Wiper Motor Cover Figure 20. 15 Rapid tooling for a

Rapid Tooling for a Rear-Wiper Motor Cover Figure 20. 15 Rapid tooling for a rear-wiper motor cover. Source: Courtesy of 3 D Systems, Inc. Manufacturing, Engineering & Technology, Fifth Edition, by Serope Kalpakjian and Steven R. Schmid. ISBN 0 -13 -148965 -8. © 2006 Pearson Education, Inc. , Upper Saddle River, NJ. All rights reserved.