Chapter 2 Fourier Transform and Spectra Topics Fourier

  • Slides: 41
Download presentation
Chapter 2 Fourier Transform and Spectra Topics: Ø Fourier transform (FT) of a waveform

Chapter 2 Fourier Transform and Spectra Topics: Ø Fourier transform (FT) of a waveform Ø Properties of Fourier Transforms Ø Parseval’s Theorem and Energy Spectral Density Ø Dirac Delta Function and Unit Step Function Ø Rectangular and Triangular Pulses Ø Convolution Erhan A. Ince Eeng 360 Communication Systems I Department of Electrical and Electronic Engineering Eastern Mediterranean University Eeng 360 1

Fourier Transform of a Waveform Ø Definition: Fourier transform The Fourier Transform (FT) of

Fourier Transform of a Waveform Ø Definition: Fourier transform The Fourier Transform (FT) of a waveform w(t) is: where ℑ[. ] denotes the Fourier transform of [. ] f is the frequency parameter with units of Hz (1/s). Ø W(f) is also called two-sided spectrum of w(t), since both positive and negative frequency components are obtained from the definition Eeng 360 2

Evaluation Techniques for FT Integral Ø One of the following techniques can be used

Evaluation Techniques for FT Integral Ø One of the following techniques can be used to evaluate a FT integral: • • Direct integration. Tables of Fourier transforms or Laplace transforms. FT theorems. Superposition to break the problem into two or more simple problems. • Differentiation or integration of w(t). • Numerical integration of the FT integral on the PC via MATLAB or Math. CAD integration functions. • Fast Fourier transform (FFT) on the PC via MATLAB or Math. CAD FFT functions. Eeng 360 3

Fourier Transform of a Waveform Ø Definition: Inverse Fourier transform The waveform w(t) can

Fourier Transform of a Waveform Ø Definition: Inverse Fourier transform The waveform w(t) can be obtained from the spectrum via the inverse Fourier transform (IFT) : Ø The functions w(t) and W(f) constitute a Fourier transform pair. Time Domain Description (Inverse FT) Frequency Domain Description (FT) Eeng 360 4

Quadrature components Phasor components Eeng 360 5

Quadrature components Phasor components Eeng 360 5

Fourier Transform - Sufficient Conditions Ø • • The waveform w(t) is Fourier transformable

Fourier Transform - Sufficient Conditions Ø • • The waveform w(t) is Fourier transformable if it satisfies the Dirichlet conditions: 1) Over any time interval of finite length, the function w(t) is single valued with a finite number of maxima and minima, and the number of discontinuities (if any) is finite. 2) w(t) is absolutely integrable. That is, Above conditions are sufficient, but not necessary. A weaker sufficient condition for the existence of the Fourier transform is: Finite Energy • • where E is the normalized energy. This is the finite-energy condition that is satisfied by all physically realizable waveforms. • Conclusion: All physical waveforms encountered in engineering practice are Fourier transformable. Eeng 360 6

Spectrum of an Exponential Pulse Eeng 360 7

Spectrum of an Exponential Pulse Eeng 360 7

Phasor components Eeng 360 8

Phasor components Eeng 360 8

Eeng 360 9

Eeng 360 9

Spectrum of an Exponential Pulse Eeng 360 10

Spectrum of an Exponential Pulse Eeng 360 10

1 -1 Eeng 360 11

1 -1 Eeng 360 11

Eeng 360 12

Eeng 360 12

Properties of Fourier Transforms Ø Theorem : Spectral symmetry of real signals If w(t)

Properties of Fourier Transforms Ø Theorem : Spectral symmetry of real signals If w(t) is real, then asterisk denotes conjugate operation. • Proof: Take the conjugate Substitute -f = Since w(t) is real, w*(t) = w(t), and it follows that W(-f) = W*(f). • If w(t) is real and is an even function of t, W(f) is real. • If w(t) is real and is an odd function of t, W(f) is imaginary. Eeng 360 13

Properties of Fourier Transforms Ø Spectral symmetry of real signals. If w(t) is real,

Properties of Fourier Transforms Ø Spectral symmetry of real signals. If w(t) is real, then: • Magnitude spectrum is even about the origin. |W(-f)| = |W(f)| • (A) Phase spectrum is odd about the origin. θ(-f) = - θ(f) (B) Corollaries of Since, W(-f) = W*(f) We see that corollaries (A) and (B) are true. Eeng 360 14

Properties of Fourier Transform • f, called frequency and having units of hertz, is

Properties of Fourier Transform • f, called frequency and having units of hertz, is just a parameter of the FT that specifies what frequency we are interested in looking for in the waveform w(t). • The FT looks for the frequency f in the w(t) over all time, that is, over -∞ < t < ∞ • W(f ) can be complex, even though w(t) is real. • If w(t) is real, then W(-f) = W*(f). Eeng 360 15

Parseval’s Theorem and Energy Spectral Density Ø Persaval’s theorem gives an alternative method to

Parseval’s Theorem and Energy Spectral Density Ø Persaval’s theorem gives an alternative method to evaluate energy in frequency domain instead of time domain. Ø In other words energy is conserved in both domains. (2 -41) Eeng 360 16

Parseval’s Theorem and Energy Spectral Density The total Normalized Energy E is given by

Parseval’s Theorem and Energy Spectral Density The total Normalized Energy E is given by the area under the Energy Spectral Density Eeng 360 17

Eeng 360 18

Eeng 360 18

TABIE 2 -1: Properties in Spectrum Domain Eeng 360 19

TABIE 2 -1: Properties in Spectrum Domain Eeng 360 19

Example 2 -3: Spectrum of a Damped Sinusoid Eeng 360 20

Example 2 -3: Spectrum of a Damped Sinusoid Eeng 360 20

Example 2 -3: Spectrum of a Damped Sinusoid Variation of W(f) with f Eeng

Example 2 -3: Spectrum of a Damped Sinusoid Variation of W(f) with f Eeng 360 21

Dirac Delta Function Ø Definition: The Dirac delta function δ(x) is defined by d(x)

Dirac Delta Function Ø Definition: The Dirac delta function δ(x) is defined by d(x) x where w(x) is any function that is continuous at x = 0. An alternative definition of δ(x) is: The Sifting Property of the δ function is If δ(x) is an even function the integral of the δ function is given by: Eeng 360 22

Unit Step Function Ø Definition: The Unit Step function u(t) is: Because δ(λ) is

Unit Step Function Ø Definition: The Unit Step function u(t) is: Because δ(λ) is zero, except at λ = 0, the Dirac delta function is related to the unit step function by Eeng 360 23

Spectrum of Sinusoids Ø Exponentials become a shifted delta Aej 2 pfct Ad(f-fc) H(f

Spectrum of Sinusoids Ø Exponentials become a shifted delta Aej 2 pfct Ad(f-fc) H(f ) fc H(fc) ej 2 pfct Ø Sinusoids become two shifted deltas 2 Acos(2 pfct) H(fc)d(f-fc) Ad(f+fc) Ad(f-fc) -fc fc Ø The Fourier Transform of a periodic signal is a weighted train of deltas Eeng 360 24

Spectrum of a Sine Wave + Eeng 360 25

Spectrum of a Sine Wave + Eeng 360 25

Spectrum of a Sine Wave Eeng 360 26

Spectrum of a Sine Wave Eeng 360 26

Fourier Transform of an Impulse Train FT of any periodic signal can be represented

Fourier Transform of an Impulse Train FT of any periodic signal can be represented as: An impulse train in time domain can be represented as: This signal is periodic hence (1) can be used to get its FT 2�� /�� -3 T -2 T -T 0 T 2 T 3 T t -2 /T 0 2 /T f 4 /T Eeng 360 27

Eeng 360 28

Eeng 360 28

Eeng 360 29

Eeng 360 29

Eeng 360 30

Eeng 360 30

Eeng 360 31

Eeng 360 31

Eeng 360 32

Eeng 360 32

Eeng 360 33

Eeng 360 33

Eeng 360 34

Eeng 360 34

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 35

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 35

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 36

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 36

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 37

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 37

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 38

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 38

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 39

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 39

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 40

https: //web. sonoma. edu/users/f/farahman/sonoma/courses/es 442/ Eeng 360 40

Eeng 360 41

Eeng 360 41