Chapter 16 Lean Systems Operations Management 5 th

  • Slides: 44
Download presentation
Chapter 16 Lean Systems Operations Management - 5 th Edition Roberta Russell & Bernard

Chapter 16 Lean Systems Operations Management - 5 th Edition Roberta Russell & Bernard W. Taylor, III Copyright 2009, John Wiley & Sons, Inc. Beni Asllani University of Tennessee at Chattanooga

Lecture Outline w w Basic Elements of Lean Production Benefits of Lean Production Implementing

Lecture Outline w w Basic Elements of Lean Production Benefits of Lean Production Implementing Lean Production Lean Services Copyright 2009, John Wiley & Sons, Inc. 2

Lean Production w Doing more with less inventory, fewer workers, less space w Just-in-time

Lean Production w Doing more with less inventory, fewer workers, less space w Just-in-time (JIT) n n smoothing the flow of material to arrive just as it is needed “JIT” and “Lean Production” are used interchangeably w Muda n waste, anything other than that which adds value to the product or service Copyright 2009, John Wiley & Sons, Inc. 3

Waste in Operations Copyright 2009, John Wiley & Sons, Inc. 4

Waste in Operations Copyright 2009, John Wiley & Sons, Inc. 4

Waste in Operations (cont. ) Copyright 2009, John Wiley & Sons, Inc. 5

Waste in Operations (cont. ) Copyright 2009, John Wiley & Sons, Inc. 5

Waste in Operations (cont. ) Copyright 2009, John Wiley & Sons, Inc. 6

Waste in Operations (cont. ) Copyright 2009, John Wiley & Sons, Inc. 6

Basic Elements 1. 2. 3. 4. 5. 6. 7. 8. 9. Flexible resources Cellular

Basic Elements 1. 2. 3. 4. 5. 6. 7. 8. 9. Flexible resources Cellular layouts Pull production system Kanban production control Small lot production Quick setups Uniform production levels Quality at the Source Total productive maintenance 10. Supplier networks Copyright 2009, John Wiley & Sons, Inc. 7

Flexible Resources w Multifunctional workers n n perform more than one job general-purpose machines

Flexible Resources w Multifunctional workers n n perform more than one job general-purpose machines perform several basic functions w Cycle time n time required for the worker to complete one pass through the operations assigned w Takt time n paces production to customer demand Copyright 2009, John Wiley & Sons, Inc. 8

Standard Operating Routine for a Worker Copyright 2009, John Wiley & Sons, Inc. 9

Standard Operating Routine for a Worker Copyright 2009, John Wiley & Sons, Inc. 9

Cellular Layouts w Manufacturing cells n comprised of dissimilar machines brought together to manufacture

Cellular Layouts w Manufacturing cells n comprised of dissimilar machines brought together to manufacture a family of parts w Cycle time is adjusted to match takt time by changing worker paths Copyright 2009, John Wiley & Sons, Inc. 10

Cells with Worker Routes Copyright 2009, John Wiley & Sons, Inc. 11

Cells with Worker Routes Copyright 2009, John Wiley & Sons, Inc. 11

Worker Routes Lengthen as Volume Decreases Copyright 2009, John Wiley & Sons, Inc. 12

Worker Routes Lengthen as Volume Decreases Copyright 2009, John Wiley & Sons, Inc. 12

Pull System w Material is pulled through the system when needed w Reversal of

Pull System w Material is pulled through the system when needed w Reversal of traditional push system where material is pushed according to a schedule w Forces cooperation w Prevent over and underproduction w While push systems rely on a predetermined schedule, pull systems rely on customer requests Copyright 2009, John Wiley & Sons, Inc. 13

Kanbans w Card which indicates standard quantity of production w Derived from two-bin inventory

Kanbans w Card which indicates standard quantity of production w Derived from two-bin inventory system w Maintain discipline of pull production w Authorize production and movement of goods Copyright 2009, John Wiley & Sons, Inc. 14

Sample Kanban Copyright 2009, John Wiley & Sons, Inc. 15

Sample Kanban Copyright 2009, John Wiley & Sons, Inc. 15

Origin of Kanban a) Two-bin inventory system Bin 1 b) Kanban inventory system Kanban

Origin of Kanban a) Two-bin inventory system Bin 1 b) Kanban inventory system Kanban Bin 2 Reorder card Q-R R R Q = order quantity R = reorder point - demand during lead time Copyright 2009, John Wiley & Sons, Inc. 16

Types of Kanban w Production kanban n authorizes production of goods w Withdrawal kanban

Types of Kanban w Production kanban n authorizes production of goods w Withdrawal kanban n authorizes movement of goods w Kanban square n a marked area designated to hold items Copyright 2009, John Wiley & Sons, Inc. w Signal kanban n a triangular kanban used to signal production at the previous workstation w Material kanban n used to order material in advance of a process w Supplier kanban n rotates between the factory and suppliers 17

Copyright 2009, John Wiley & Sons, Inc. 18

Copyright 2009, John Wiley & Sons, Inc. 18

Copyright 2009, John Wiley & Sons, Inc. 19

Copyright 2009, John Wiley & Sons, Inc. 19

Copyright 2009, John Wiley & Sons, Inc. 20

Copyright 2009, John Wiley & Sons, Inc. 20

Determining Number of Kanbans No. of Kanbans = average demand during lead time +

Determining Number of Kanbans No. of Kanbans = average demand during lead time + safety stock container size N = d. L + S C where N d L S C = number of kanbans or containers = average demand over some time period = lead time to replenish an order = safety stock = container size Copyright 2009, John Wiley & Sons, Inc. 21

Determining Number of Kanbans: Example d L S C = 150 bottles per hour

Determining Number of Kanbans: Example d L S C = 150 bottles per hour = 30 minutes = 0. 5 hours = 0. 10(150 x 0. 5) = 7. 5 = 25 bottles (150 x 0. 5) + 7. 5 d. L + S N= = 25 C 75 + 7. 5 = = 3. 3 kanbans or containers 25 Round up to 4 (to allow some slack) or down to 3 (to force improvement) Copyright 2009, John Wiley & Sons, Inc. 22

Small Lots w Require less space and capital investment w Move processes closer together

Small Lots w Require less space and capital investment w Move processes closer together w Make quality problems easier to detect w Make processes more dependent on each other Copyright 2009, John Wiley & Sons, Inc. 23

Inventory Hides Problems Copyright 2009, John Wiley & Sons, Inc. 24

Inventory Hides Problems Copyright 2009, John Wiley & Sons, Inc. 24

Less Inventory Exposes Problems Copyright 2009, John Wiley & Sons, Inc. 25

Less Inventory Exposes Problems Copyright 2009, John Wiley & Sons, Inc. 25

Components of Lead Time w Processing time n Reduce number of items or improve

Components of Lead Time w Processing time n Reduce number of items or improve efficiency w Move time n Reduce distances, simplify movements, standardize routings w Waiting time n Better scheduling, sufficient capacity w Setup time n Generally the biggest bottleneck Copyright 2009, John Wiley & Sons, Inc. 26

Quick Setups w Internal setup n Can be performed only when a process is

Quick Setups w Internal setup n Can be performed only when a process is stopped w External setup n Can be performed in advance Copyright 2009, John Wiley & Sons, Inc. w SMED Principles n n Separate internal setup from external setup Convert internal setup to external setup Streamline all aspects of setup Perform setup activities in parallel or eliminate them entirely 27

Common Techniques for Reducing Setup Time Copyright 2009, John Wiley & Sons, Inc. 28

Common Techniques for Reducing Setup Time Copyright 2009, John Wiley & Sons, Inc. 28

Common Techniques for Reducing Setup Time (cont. ) Copyright 2009, John Wiley & Sons,

Common Techniques for Reducing Setup Time (cont. ) Copyright 2009, John Wiley & Sons, Inc. 29

Common Techniques for Reducing Setup Time (cont. ) Copyright 2009, John Wiley & Sons,

Common Techniques for Reducing Setup Time (cont. ) Copyright 2009, John Wiley & Sons, Inc. 30

Uniform Production Levels w Result from smoothing production requirements w Kanban systems can handle

Uniform Production Levels w Result from smoothing production requirements w Kanban systems can handle +/- 10% demand changes w Smooth demand across planning horizon w Mixed-model assembly steadies component production Copyright 2009, John Wiley & Sons, Inc. 31

Mixed-Model Sequencing Copyright 2009, John Wiley & Sons, Inc. 32

Mixed-Model Sequencing Copyright 2009, John Wiley & Sons, Inc. 32

Quality at the Source w Visual control n makes problems visible w Poka-yokes n

Quality at the Source w Visual control n makes problems visible w Poka-yokes n prevent defects from occurring w Kaizen n a system of continuous improvement; “change for the good of all” Copyright 2009, John Wiley & Sons, Inc. w Jidoka n authority to stop the production line w Andons n call lights that signal quality problems w Under-capacity scheduling n leaves time for planning, problem solving, and maintenance 33

Examples of Visual Control Copyright 2009, John Wiley & Sons, Inc. 34

Examples of Visual Control Copyright 2009, John Wiley & Sons, Inc. 34

Examples of Visual Control (cont. ) Copyright 2009, John Wiley & Sons, Inc. 35

Examples of Visual Control (cont. ) Copyright 2009, John Wiley & Sons, Inc. 35

Examples of Visual Control (cont. ) Copyright 2009, John Wiley & Sons, Inc. 36

Examples of Visual Control (cont. ) Copyright 2009, John Wiley & Sons, Inc. 36

Total Productive Maintenance (TPM) w Breakdown maintenance n Repairs to make failed machine operational

Total Productive Maintenance (TPM) w Breakdown maintenance n Repairs to make failed machine operational w Preventive maintenance n System of periodic inspection and maintenance to keep machines operating w TPM combines preventive maintenance and total quality concepts Copyright 2009, John Wiley & Sons, Inc. 37

TPM Requirements w Design products that can be easily produced on existing machines w

TPM Requirements w Design products that can be easily produced on existing machines w Design machines for easier operation, changeover, maintenance w Train and retrain workers to operate machines w Purchase machines that maximize productive potential w Design preventive maintenance plan spanning life of machine Copyright 2009, John Wiley & Sons, Inc. 38

5 S Scan § Seiri (sort) § Seiton (set in order) § Seisou (shine)

5 S Scan § Seiri (sort) § Seiton (set in order) § Seisou (shine) § Seiketsu (standardize) § Shisuke (sustain) Goal § Keep only what you need § A place for everything and everything in its place § Cleaning, and looking for ways to keep clean and organized § Maintaining and monitoring the first three categories § Sticking to the rules Copyright 2009, John Wiley & Sons, Inc. Eliminate or Correct § Unneeded equipment, tools, furniture; unneeded items on walls, bulletins; items blocking aisles or stacked in corners; unneeded inventory, supplies, parts; safety hazards § Items not in their correct places; correct places not obvious; aisles, workstations, & equipment locations not indicated; items not put away immediately after use § Floors, walls, stairs, equipment, & surfaces not lines, clean; cleaning materials not easily accessible; labels, signs broken or unclean; other cleaning problems § Necessary information not visible; standards not known; checklists missing; quantities and limits not easily recognizable; items can’t be located within 30 seconds § Number of workers without 5 S training; number of daily 5 S inspections not performed; number of personal items not stored; number of times job aids not available or up-to-date 39

Supplier Networks w w w w Long-term supplier contracts Synchronized production Supplier certification Mixed

Supplier Networks w w w w Long-term supplier contracts Synchronized production Supplier certification Mixed loads and frequent deliveries Precise delivery schedules Standardized, sequenced delivery Locating in close proximity to the customer Copyright 2009, John Wiley & Sons, Inc. 40

Benefits of Lean Production w w w Reduced inventory Improved quality Lower costs Reduced

Benefits of Lean Production w w w Reduced inventory Improved quality Lower costs Reduced space requirements Shorter lead time Increased productivity Copyright 2009, John Wiley & Sons, Inc. 41

Benefits of Lean Production (cont. ) w w w Greater flexibility Better relations with

Benefits of Lean Production (cont. ) w w w Greater flexibility Better relations with suppliers Simplified scheduling and control activities Increased capacity Better use of human resources More product variety Copyright 2009, John Wiley & Sons, Inc. 42

Implementing Lean Production w Use lean production to finely tune an operating system w

Implementing Lean Production w Use lean production to finely tune an operating system w Somewhat different in USA than Japan w Lean production is still evolving w Lean production isn’t for everyone Copyright 2009, John Wiley & Sons, Inc. 43

Lean Services w Basic elements of lean production apply equally to services w Most

Lean Services w Basic elements of lean production apply equally to services w Most prevalent applications n n n lean retailing lean banking lean health care Copyright 2009, John Wiley & Sons, Inc. 44