Chapter 11 Integer Programming Goal Programming and Nonlinear

  • Slides: 106
Download presentation
Chapter 11 Integer Programming, Goal Programming, and Nonlinear Programming To accompany Quantitative Analysis for

Chapter 11 Integer Programming, Goal Programming, and Nonlinear Programming To accompany Quantitative Analysis for Management, Tenth Edition, by Render, Stair, and Hanna Power Point slides created by Jeff Heyl © 2008 Prentice-Hall, Inc. © 2009 Prentice-Hall, Inc.

Learning Objectives After completing this chapter, students will be able to: 1. Understand the

Learning Objectives After completing this chapter, students will be able to: 1. Understand the difference between LP and 2. 3. 4. 5. integer programming Understand solve three types of integer programming problems Apply the branch and bound method to solve integer programming problems Solve goal programming problems graphically and using a modified simplex technique Formulate nonlinear programming problems and solve using Excel © 2009 Prentice-Hall, Inc. 11 – 2

Chapter Outline 11. 1 11. 2 11. 3 11. 4 11. 5 Introduction Integer

Chapter Outline 11. 1 11. 2 11. 3 11. 4 11. 5 Introduction Integer Programming Modeling with 0 -1 (Binary) Variables Goal Programming Nonlinear Programming © 2009 Prentice-Hall, Inc. 11 – 3

Introduction n A large number of business problems can be n n n solved

Introduction n A large number of business problems can be n n n solved only if variables have integer values We will solve integer programming problems graphically and by using the branch and bound method Many business problems have multiple objectives Goal programming is an extension to LP that can permit multiple objectives Linear programming requires linear models Nonlinear programming allows objectives and constraints to be nonlinear © 2009 Prentice-Hall, Inc. 11 – 4

Integer Programming n An integer programming model is one where one or more of

Integer Programming n An integer programming model is one where one or more of the decision variables has to take on an integer value in the final solution n There are three types of integer programming problems 1. Pure integer programming where all variables have integer values 2. Mixed-integer programming where some but not all of the variables will have integer values 3. Zero-one integer programming are special cases in which all the decision variables must have integer solution values of 0 or 1 © 2009 Prentice-Hall, Inc. 11 – 5

Integer Programming n Solving an integer programming problem is much more difficult than solving

Integer Programming n Solving an integer programming problem is much more difficult than solving an LP problem n Even the fastest computers can take an excessively long time to solve big integer programming problems n The most common technique used to solve integer programming problems is the branch and bound method © 2009 Prentice-Hall, Inc. 11 – 6

Harrison Electric Company Example of Integer Programming n The Company produces two products popular

Harrison Electric Company Example of Integer Programming n The Company produces two products popular n n with home renovators, old-fashioned chandeliers and ceiling fans Both the chandeliers and fans require a two-step production process involving wiring and assembly It takes about 2 hours to wire each chandelier and 3 hours to wire a ceiling fan Final assembly of the chandeliers and fans requires 6 and 5 hours respectively The production capability is such that only 12 hours of wiring time and 30 hours of assembly time are available © 2009 Prentice-Hall, Inc. 11 – 7

Harrison Electric Company Example of Integer Programming n Each chandelier produced nets the firm

Harrison Electric Company Example of Integer Programming n Each chandelier produced nets the firm $7 and each fan $6 n Harrison’s production mix decision can be formulated using LP as follows Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 ≤ 12 (wiring hours) 6 X 1 + 5 X 2 ≤ 30 (assembly hours) X 1, X 2 ≥ 0 (nonnegative) where X 1 = number of chandeliers produced X 2 = number of ceiling fans produced © 2009 Prentice-Hall, Inc. 11 – 8

Harrison Electric Company Example of Integer Programming n The Harrison Electric Problem X 2

Harrison Electric Company Example of Integer Programming n The Harrison Electric Problem X 2 6– 5– 6 X 1 + 5 X 2 ≤ 30 4– + = Possible Integer Solution 3– 2– Figure 11. 1 + + Optimal LP Solution (X 1 =3. 75, X 2 = 1. 5, Profit = $35. 25) 2 X 1 + 3 X 2 ≤ 12 1– + + 0 |– | | | 1 2 3 4 5 6 X 1 © 2009 Prentice-Hall, Inc. 11 – 9

Harrison Electric Company Example of Integer Programming n The production planner Wes recognizes this

Harrison Electric Company Example of Integer Programming n The production planner Wes recognizes this is an n n integer problem His first attempt at solving it is to round the values to X 1 = 4 and X 2 = 2 However, this is not feasible Rounding X 2 down to 1 gives a feasible solution, but it may not be optimal This could be solved using the enumeration method Enumeration is generally not possible for large problems © 2009 Prentice-Hall, Inc. 11 – 10

Harrison Electric Company Example of Integer Programming CHANDELIERS (X 1) CEILING FANS (X 2)

Harrison Electric Company Example of Integer Programming CHANDELIERS (X 1) CEILING FANS (X 2) PROFIT ($7 X 1 + $6 X 2) 0 0 $0 1 0 7 2 0 14 3 0 21 4 0 28 5 0 35 0 1 6 1 1 13 2 1 20 3 1 27 4 1 34 0 2 12 1 2 19 2 2 26 3 2 33 0 3 18 1 3 25 0 4 24 n Integer solutions Optimal solution to integer programming problem Solution if rounding is used Table 11. 1 © 2009 Prentice-Hall, Inc. 11 – 11

Harrison Electric Company Example of Integer Programming n The rounding solution of X 1

Harrison Electric Company Example of Integer Programming n The rounding solution of X 1 = 4, X 2 = 1 gives a profit of $34 n The optimal solution of X 1 = 5, X 2 = 0 gives a profit of $35 n The optimal integer solution is less than the optimal LP solution n An integer solution can never be better than the LP solution and is usually a lesser solution © 2009 Prentice-Hall, Inc. 11 – 12

Branch-and-Bound Method n The most common algorithm for solving integer n n programming problems

Branch-and-Bound Method n The most common algorithm for solving integer n n programming problems is the branch-and-bound method It starts by first allowing non-integer solutions If these values are integer valued, this must also be the solution to the integer problem If these variables are not integer valued, the feasible region is divided by adding constraints restricting the value of one of the variables that was not integer valued The divided feasible region results in subproblems that are then solved © 2009 Prentice-Hall, Inc. 11 – 13

Branch-and-Bound Method n Bounds on the value of the objective function are found and

Branch-and-Bound Method n Bounds on the value of the objective function are found and used to help determine which subproblems can be eliminated and when the optimal solution has been found n If a solution is not optimal, a new subproblem is selected and branching continues © 2009 Prentice-Hall, Inc. 11 – 14

Six Steps in Solving IP Maximization Problems by Branch and Bound 1. Solve the

Six Steps in Solving IP Maximization Problems by Branch and Bound 1. Solve the original problem using LP. If the answer satisfies the integer constraints, we are done. If not, this value provides an initial upper bound. 2. Find any feasible solution that meets the integer constraints for use as a lower bound. Usually, rounding down each variable will accomplish this. 3. Branch on one variable from step 1 that does not have an integer value. Split the problem into two subproblems based on integer values that are immediately above or below the noninteger value. 4. Create nodes at the top of these new branches by solving the new problem © 2009 Prentice-Hall, Inc. 11 – 15

Six Steps in Solving IP Maximization Problems by Branch and Bound 5. (a) If

Six Steps in Solving IP Maximization Problems by Branch and Bound 5. (a) If a branch yields a solution to the LP problem that is not feasible, feasible terminate the branch (b) If a branch yields a solution to the LP problem that is feasible, but not an integer solution, go to step 6 (c) If the branch yields a feasible integer solution, examine the value of the objective function. If this value equals the upper bound, an optimal solution has been reached. If it not equal to the upper bound, but exceeds the lower bound, terminate this branch. © 2009 Prentice-Hall, Inc. 11 – 16

Six Steps in Solving IP Maximization Problems by Branch and Bound 6. Examine both

Six Steps in Solving IP Maximization Problems by Branch and Bound 6. Examine both branches again and set the upper bound equal to the maximum value of the objective function at all final nodes. If the upper bound equals the lower bound, stop. If not, go back to step 3. Note: Minimization problems involved reversing the roles of the upper and lower bounds © 2009 Prentice-Hall, Inc. 11 – 17

Harrison Electric Company Revisited n Recall that the Harrison Electric Company’s integer programming formulation

Harrison Electric Company Revisited n Recall that the Harrison Electric Company’s integer programming formulation is Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 ≤ 12 6 X 1 + 5 X 2 ≤ 30 where X 1 = number of chandeliers produced X 2 = number of ceiling fans produced n And the optimal noninteger solution is X 1 = 3. 75 chandeliers, X 2 = 1. 5 ceiling fans profit = $35. 25 © 2009 Prentice-Hall, Inc. 11 – 18

Harrison Electric Company Revisited n Since X 1 and X 2 are not integers,

Harrison Electric Company Revisited n Since X 1 and X 2 are not integers, this solution is not valid n The profit value of $35. 25 will provide the initial upper bound n We can round down to X 1 = 3, X 2 = 1, profit = $27, which provides a feasible lower bound n The problem is now divided into two subproblems © 2009 Prentice-Hall, Inc. 11 – 19

Harrison Electric Company Revisited Subproblem A Maximize profit = $7 X 1 + $6

Harrison Electric Company Revisited Subproblem A Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 ≤ 12 6 X 1 + 5 X 2 ≤ 30 X 1 ≥ 4 Subproblem B Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 ≤ 12 6 X 1 + 5 X 2 ≤ 30 X 1 ≤ 3 © 2009 Prentice-Hall, Inc. 11 – 20

Harrison Electric Company Revisited n If you solve both subproblems graphically Subproblem A’s [X

Harrison Electric Company Revisited n If you solve both subproblems graphically Subproblem A’s [X 1 = 4, X 2 = 1. 2, profit = $35. 20] optimal solution: Subproblem B’s [X 1 = 3, X 2 = 2, profit = $33. 00] optimal solution: n We have completed steps 1 to 4 of the branch and bound method © 2009 Prentice-Hall, Inc. 11 – 21

Harrison Electric Company Revisited n Harrison Electric’s first branching: subproblems A and B Next

Harrison Electric Company Revisited n Harrison Electric’s first branching: subproblems A and B Next Branch (C) Subproblem A X 1 ≥ 4 X 1 = 4 X 2 = 1. 2 P = 35. 20 Infeasible (Noninteger) Solution Upper Bound = $35. 20 Lower Bound = $33. 00 Next Branch (D) X 1 = 3. 75 X 2 = 1. 5 P = 35. 25 X 1 Figure 11. 2 Upper Bound = $35. 25 Lower Bound = $27. 00 (From Rounding Down) Subproblem B ≤ 3 X 1 = 3 X 2 = 2 P = 33. 00 Stop This Branch Solution Is Integer, Feasible Provides New Lower Bound of $33. 00 © 2009 Prentice-Hall, Inc. 11 – 22

Harrison Electric Company Revisited n Subproblem A has branched into two new subproblems, C

Harrison Electric Company Revisited n Subproblem A has branched into two new subproblems, C and D Subproblem C Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 6 X 1 + 5 X 2 X 1 X 2 ≤ 12 ≤ 30 ≥ 4 ≥ 2 Subproblem D Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 6 X 1 + 5 X 2 X 1 X 2 ≤ 12 ≤ 30 ≥ 4 ≤ 1 © 2009 Prentice-Hall, Inc. 11 – 23

Harrison Electric Company Revisited n Subproblem C has no feasible solution because the all

Harrison Electric Company Revisited n Subproblem C has no feasible solution because the all the constraints can not be satisfied n We terminate this branch and do not consider this solution n Subproblem D’s optimal solution is X 1 = 4. 17, X 2 = 1, profit = $35. 16 n This noninteger solution yields a new upper bound of $35. 16 © 2009 Prentice-Hall, Inc. 11 – 24

Harrison Electric Company Revisited n Finally we create subproblems E and F Subproblem E

Harrison Electric Company Revisited n Finally we create subproblems E and F Subproblem E Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 6 X 1 + 5 X 2 X 1 X 2 Subproblem D Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 6 X 1 + 5 X 2 X 1 X 2 ≤ 12 ≤ 30 ≥ 4 ≤ 1 ≤ 12 ≤ 30 ≥ 4 ≥ 5 ≤ 1 Optimal solution to E: X 1 = 4, X 2 = 1, profit = $34 Optimal solution to F: X 1 = 5, X 2 = 0, profit = $35 © 2009 Prentice-Hall, Inc. 11 – 25

Harrison Electric Company Revisited n The stopping rule for the branching process is that

Harrison Electric Company Revisited n The stopping rule for the branching process is that n n n we continue until the new upper bound is less than or equal to the lower bound or no further branching is possible The later case applies here since both branches yielded feasible integer solutions The optimal solution is subproblem F’s node Computer solutions work well on small and medium problems For large problems the analyst may have to settle for a near-optimal solution © 2009 Prentice-Hall, Inc. 11 – 26

Harrison Electric Company Revisited n Harrison Electric’s full branch and bound solution Subproblem C

Harrison Electric Company Revisited n Harrison Electric’s full branch and bound solution Subproblem C No Feasible Solution Region Subproblem A X 2 X 1 ≥ 4 X 1 = 4 X 2 = 1. 2 P = 35. 20 Subproblem D X 2 X 1 = 3. 75 X 2 = 1. 5 P = 35. 25 Subproblem B X 1 Figure 11. 3 ≤ 3 Subproblem E ≥ 2 ≤ 1 X 1 = 4. 17 X 2 = 1 P = 35. 16 1 Upper Bound = $35. 25 Lower Bound = $27. 00 Feasible, Integer Solution Subproblem F X X 1 = 3 X 2 = 2 P = 33. 00 ≤ 4 X 1 = 4 X 2 = 1 P = 34. 00 ≥ 5 X 1 = 5 X 2 = 0 P = 35. 00 Optimal Solution © 2009 Prentice-Hall, Inc. 11 – 27

Using Software to Solve Harrison Integer Programming Problem n QM for Windows input screen

Using Software to Solve Harrison Integer Programming Problem n QM for Windows input screen with Harrison Electric data Program 11. 1 A © 2009 Prentice-Hall, Inc. 11 – 28

Using Software to Solve Harrison Integer Programming Problem n QM for Windows solution screen

Using Software to Solve Harrison Integer Programming Problem n QM for Windows solution screen for Harrison Electric data Program 11. 1 B © 2009 Prentice-Hall, Inc. 11 – 29

Using Software to Solve Harrison Integer Programming Problem n QM for Windows iteration results

Using Software to Solve Harrison Integer Programming Problem n QM for Windows iteration results screen for Harrison Electric data Program 11. 1 C © 2009 Prentice-Hall, Inc. 11 – 30

Using Software to Solve Harrison Integer Programming Problem n Using Excel’s Solver to formulate

Using Software to Solve Harrison Integer Programming Problem n Using Excel’s Solver to formulate Harrison’s integer programming model Program 11. 2 A © 2009 Prentice-Hall, Inc. 11 – 31

Using Software to Solve Harrison Integer Programming Problem n Integer variables are specified with

Using Software to Solve Harrison Integer Programming Problem n Integer variables are specified with a drop-down menu in Solver Program 11. 2 B © 2009 Prentice-Hall, Inc. 11 – 32

Using Software to Solve Harrison Integer Programming Problem n Excel solution to the Harrison

Using Software to Solve Harrison Integer Programming Problem n Excel solution to the Harrison Electric integer programming model Program 11. 2 C © 2009 Prentice-Hall, Inc. 11 – 33

Mixed-Integer Programming Problem Example n There are many situations in which some of the

Mixed-Integer Programming Problem Example n There are many situations in which some of the n n n variables are restricted to be integers and some are not Bagwell Chemical Company produces two industrial chemicals Xyline must be produced in 50 -pound bags Hexall is sold by the pound and can be produced in any quantity Both xyline and hexall are composed of three ingredients – A, B, and C Bagwell sells xyline for $85 a bag and hexall for $1. 50 per pound © 2009 Prentice-Hall, Inc. 11 – 34

Mixed-Integer Programming Problem Example AMOUNT PER 50 -POUND BAG OF XYLINE (LB) AMOUNT PER

Mixed-Integer Programming Problem Example AMOUNT PER 50 -POUND BAG OF XYLINE (LB) AMOUNT PER POUND OF HEXALL (LB) AMOUNT OF INGREDIENTS AVAILABLE 30 0. 5 2, 000 lb–ingredient A 18 0. 4 800 lb–ingredient B 2 0. 1 200 lb–ingredient C n Bagwell wants to maximize profit n We let X = number of 50 -pound bags of xyline n We let Y = number of pounds of hexall n This is a mixed-integer programming problem as Y is not required to be an integer © 2009 Prentice-Hall, Inc. 11 – 35

Mixed-Integer Programming Problem Example n The model is Maximize profit = $85 X +

Mixed-Integer Programming Problem Example n The model is Maximize profit = $85 X + $1. 50 Y subject to 30 X + 0. 5 Y X, Y ≤ ≤ 2, 000 800 200 0 and X integer © 2009 Prentice-Hall, Inc. 11 – 36

Mixed-Integer Programming Problem Example n Using QM for Windows and Excel to solve Bagwell’s

Mixed-Integer Programming Problem Example n Using QM for Windows and Excel to solve Bagwell’s IP model Program 11. 3 © 2009 Prentice-Hall, Inc. 11 – 37

Mixed-Integer Programming Problem Example n Excel formulation of Bagwell’s IP problem with Solver Program

Mixed-Integer Programming Problem Example n Excel formulation of Bagwell’s IP problem with Solver Program 11. 4 A © 2009 Prentice-Hall, Inc. 11 – 38

Mixed-Integer Programming Problem Example n Excel solution to the Bagwell Chemical problem Program 11.

Mixed-Integer Programming Problem Example n Excel solution to the Bagwell Chemical problem Program 11. 4 B © 2009 Prentice-Hall, Inc. 11 – 39

Modeling With 0 -1 (Binary) Variables n We can demonstrate how 0 -1 variables

Modeling With 0 -1 (Binary) Variables n We can demonstrate how 0 -1 variables can be used to model several diverse situations n Typically a 0 -1 variable is assigned a value of 0 if a certain condition is not met and a 1 if the condition is met n This is also called a binary variable © 2009 Prentice-Hall, Inc. 11 – 40

Capital Budgeting Example n A common capital budgeting problem is selecting from a set

Capital Budgeting Example n A common capital budgeting problem is selecting from a set of possible projects when budget limitations make it impossible to select them all n A 0 -1 variable is defined for each project n Quemo Chemical Company is considering three possible improvement projects for its plant n A new catalytic converter n A new software program for controlling operations n Expanding the storage warehouse n It can not do them all n They want to maximize net present value of projects undertaken © 2009 Prentice-Hall, Inc. 11 – 41

Capital Budgeting Example n Quemo Chemical Company information PROJECT NET PRESENT VALUE YEAR 1

Capital Budgeting Example n Quemo Chemical Company information PROJECT NET PRESENT VALUE YEAR 1 YEAR 2 Catalytic Converter $25, 000 $8, 000 $7, 000 Software $18, 000 $6, 000 $4, 000 Warehouse expansion $32, 000 $12, 000 $8, 000 $20, 000 $16, 000 Available funds Table 11. 2 n The basic model is Maximize net present value of projects undertaken subject to Total funds used in year 1 ≤ $20, 000 Total funds used in year 2 ≤ $16, 000 © 2009 Prentice-Hall, Inc. 11 – 42

Capital Budgeting Example n The decision variables are 1 if catalytic converter project is

Capital Budgeting Example n The decision variables are 1 if catalytic converter project is funded X 1 = 0 otherwise X 2 = X 3 = 1 if software project is funded 0 otherwise 1 if warehouse expansion project is funded 0 otherwise n The mathematical statement of the integer programming problem becomes Maximize NPV = 25, 000 X 1 + 18, 000 X 2 + 32, 000 X 3 subject to 8, 000 X 1 + 6, 000 X 2 + 12, 000 X 3 ≤ 20, 000 7, 000 X 1 + 4, 000 X 2 + 8, 000 X 3 ≤ 16, 000 X 1, X 2, X 3 = 0 or 1 © 2009 Prentice-Hall, Inc. 11 – 43

Capital Budgeting Example n Solved with computer software, the optimal solution is X 1

Capital Budgeting Example n Solved with computer software, the optimal solution is X 1 = 1, X 2 = 0, and X 3 = 1 with an objective function value of 57, 000 n This means that Quemo Chemical should fund the catalytic converter and warehouse expansion projects only n The net present value of these investments will be $57, 000 © 2009 Prentice-Hall, Inc. 11 – 44

Limiting the Number of Alternatives Selected n One common use of 0 -1 variables

Limiting the Number of Alternatives Selected n One common use of 0 -1 variables involves limiting the number of projects or items that are selected from a group n Suppose Quemo Chemical is required to select no more than two of the three projects regardless of the funds available n This would require adding a constraint X 1 + X 2 + X 3 ≤ 2 n If they had to fund exactly two projects the constraint would be X 1 + X 2 + X 3 = 2 © 2009 Prentice-Hall, Inc. 11 – 45

Dependent Selections n At times the selection of one project depends on the selection

Dependent Selections n At times the selection of one project depends on the selection of another project n Suppose Quemo’s catalytic converter could only be purchased if the software was purchased n The following constrain would force this to occur X 1 ≤ X 2 or X 1 – X 2 ≤ 0 n If we wished for the catalytic converter and software projects to either both be selected or both not be selected, the constraint would be X 1 = X 2 or X 1 – X 2 = 0 © 2009 Prentice-Hall, Inc. 11 – 46

Fixed-Charge Problem Example n Often businesses are faced with decisions involving a fixed charge

Fixed-Charge Problem Example n Often businesses are faced with decisions involving a fixed charge that will affect the cost of future operations n Sitka Manufacturing is planning to build at least one new plant and three cities are being considered in n Baytown, Texas n Lake Charles, Louisiana n Mobile, Alabama n Once the plant or plants are built, the company want to have capacity to produce at least 38, 000 units each year © 2009 Prentice-Hall, Inc. 11 – 47

Fixed-Charge Problem Example n Fixed and variable costs for Sitka Manufacturing SITE ANNUAL FIXED

Fixed-Charge Problem Example n Fixed and variable costs for Sitka Manufacturing SITE ANNUAL FIXED COST VARIABLE COST PER UNIT ANNUAL CAPACITY Baytown, TX $340, 000 $32 21, 000 Lake Charles, LA $270, 000 $33 20, 000 Mobile, AL $290, 000 $30 19, 000 Table 11. 3 © 2009 Prentice-Hall, Inc. 11 – 48

Fixed-Charge Problem Example n We can define the decision variables as X 1 =

Fixed-Charge Problem Example n We can define the decision variables as X 1 = 1 if factory is built in Baytown 0 otherwise X 2 = 1 factory is built in Lake Charles 0 otherwise X 3 = 1 if factory is built in Mobile 0 otherwise X 4 = number of units produced at Baytown plant X 5 = number of units produced at Lake Charles plant X 6 = number of units produced at Mobile plant © 2009 Prentice-Hall, Inc. 11 – 49

Fixed-Charge Problem Example n The integer programming formulation becomes Minimize cost = 340, 000

Fixed-Charge Problem Example n The integer programming formulation becomes Minimize cost = 340, 000 X 1 + 270, 000 X 2 + 290, 000 X 3 + 32 X 4 + 33 X 5 + 30 X 6 subject to X 4 + X 5 + X 6 X 4 X 5 X 6 X 1 , X 2 , X 3 X 4 , X 5 , X 6 ≥ 38, 000 ≤ 21, 000 X 1 ≤ 20, 000 X 2 ≤ 19, 000 X 3 = 0 or 1; ≥ 0 and integer n The optimal solution is X 1 = 0, X 2 = 1, X 3 = 1, X 4 = 0, X 5 = 19, 000, X 6 = 19, 000 Objective function value = $1, 757, 000 © 2009 Prentice-Hall, Inc. 11 – 50

Financial Investment Example n Numerous financial applications exist with 0 -1 variables n Simkin,

Financial Investment Example n Numerous financial applications exist with 0 -1 variables n Simkin, and Steinberg specialize in recommending oil stock portfolios for wealthy clients n One client has the following specifications n At least two Texas firms must be in the portfolio n No more than one investment can be made in a foreign oil company n One of the two California oil stocks must be purchased n The client has $3 million to invest and wants to buy large blocks of shares © 2009 Prentice-Hall, Inc. 11 – 51

Financial Investment Example n Oil investment opportunities STOCK COMPANY NAME EXPECTED ANNUAL RETURN ($1,

Financial Investment Example n Oil investment opportunities STOCK COMPANY NAME EXPECTED ANNUAL RETURN ($1, 000 s) COST FOR BLOCK OF SHARES ($1, 000 s) 1 Trans-Texas Oil 50 480 2 British Petroleum 80 540 3 Dutch Shell 90 680 4 Houston Drilling 120 1, 000 5 Texas Petroleum 110 700 6 San Diego Oil 40 510 7 California Petro 75 900 Table 11. 4 © 2009 Prentice-Hall, Inc. 11 – 52

Financial Investment Example n Model formulation Maximize return = 50 X 1 + 80

Financial Investment Example n Model formulation Maximize return = 50 X 1 + 80 X 2 + 90 X 3 + 120 X 4 + 110 X 5 + 40 X 6 + 75 X 7 subject to X 1 + X 4 + X 5 ≥ 2 (Texas constraint) X 2 + X 3 ≤ 1 (foreign oil constraint) X 6 + X 7 = 1 (California constraint) 480 X 1 + 540 X 2 + 680 X 3 + 1, 000 X 4 + 700 X 5 + 510 X 6 + 900 X 7 ≤ 3, 000 ($3 million limit) All variables must be 0 or 1 © 2009 Prentice-Hall, Inc. 11 – 53

Using Excel to Solve the Simkin Example n Solver input for Simkin’s 0 -1

Using Excel to Solve the Simkin Example n Solver input for Simkin’s 0 -1 variables Program 11. 5 A © 2009 Prentice-Hall, Inc. 11 – 54

Using Excel to Solve the Simkin Example n Complete Solver input for Simkin’s 0

Using Excel to Solve the Simkin Example n Complete Solver input for Simkin’s 0 -1 integer programming problem Program 11. 5 B © 2009 Prentice-Hall, Inc. 11 – 55

Using Excel to Solve the Simkin Example n Excel solution to Simkin’s 0 -1

Using Excel to Solve the Simkin Example n Excel solution to Simkin’s 0 -1 integer programming problem Program 11. 5 C © 2009 Prentice-Hall, Inc. 11 – 56

Goal Programming n Firms often have more than one goal n They may want

Goal Programming n Firms often have more than one goal n They may want to achieve several, sometimes contradictory, goals n In linear and integer programming methods the objective function is measured in one dimension only n It is not possible for LP to have multiple goals unless they are all measured in the same units, and this is a highly unusual situation n An important technique that has been developed to supplement LP is called goal programming © 2009 Prentice-Hall, Inc. 11 – 57

Goal Programming n Typically goals set by management can be achieved only at the

Goal Programming n Typically goals set by management can be achieved only at the expense of other goals n A hierarchy of importance needs to be established so that higher-priority goals are satisfied before lower-priority goals are addressed n It is not always possible to satisfy every goal so goal programming attempts to reach a satisfactory level of multiple objectives n The main difference is in the objective function where goal programming tries to minimize the deviations between goals and what we can actually achieve within the given constraints © 2009 Prentice-Hall, Inc. 11 – 58

Example of Goal Programming Harrison Electric Revisited n The LP formulation for the Harrison

Example of Goal Programming Harrison Electric Revisited n The LP formulation for the Harrison Electric problem is Maximize profit = $7 X 1 + $6 X 2 subject to 2 X 1 + 3 X 2 ≤ 12 (wiring hours) 6 X 1 + 5 X 2 ≤ 30 (assembly hours) X 1, X 2 ≥ 0 where X 1 = number of chandeliers produced X 2 = number of ceiling fans produced © 2009 Prentice-Hall, Inc. 11 – 59

Example of Goal Programming Harrison Electric Revisited n Harrison is moving to a new

Example of Goal Programming Harrison Electric Revisited n Harrison is moving to a new location and feels that maximizing profit is not a realistic objective n Management sets a profit level of $30 that would be satisfactory during this period n The goal programming problem is to find the production mix that achieves this goal as closely as possible given the production time constraints n We need to define two deviational variables d 1– = underachievement of the profit target d 1+ = overachievement of the profit target © 2009 Prentice-Hall, Inc. 11 – 60

Example of Goal Programming Harrison Electric Revisited n We can now state the Harrison

Example of Goal Programming Harrison Electric Revisited n We can now state the Harrison Electric problem as a single-goal programming model Minimize under or overachievement of profit target subject to = d 1– + d 1+ $7 X 1 + $6 X 2 + d 1– – d 1+ = $30 2 X 1 + 3 X 2 ≤ 12 6 X 1 + 5 X 2 ≤ 30 X 1, X 2, d 1–, d 1+ ≥ 0 (profit goal constraint) (wiring hours) (assembly hours) © 2009 Prentice-Hall, Inc. 11 – 61

Extension to Equally Important Multiple Goals n Now Harrison’s management wants to achieve several

Extension to Equally Important Multiple Goals n Now Harrison’s management wants to achieve several goals of equal in priority Goal 1: to produce a profit of $30 if possible during the production period Goal 2: to fully utilize the available wiring department hours Goal 3: to avoid overtime in the assembly department Goal 4: to meet a contract requirement to produce at least seven ceiling fans © 2009 Prentice-Hall, Inc. 11 – 62

Extension to Equally Important Multiple Goals n The deviational variables are d 1– =

Extension to Equally Important Multiple Goals n The deviational variables are d 1– = underachievement of the profit target d 1+ = overachievement of the profit target d 2– = idle time in the wiring department (underutilization) d 2+ = overtime in the wiring department (overutilization) d 3– = idle time in the assembly department (underutilization) d 3+ = overtime in the assembly department (overutilization) d 4– = underachievement of the ceiling fan goal d 4+ = overachievement of the ceiling fan goal © 2009 Prentice-Hall, Inc. 11 – 63

Extension to Equally Important Multiple Goals n Because management is unconcerned about d 1+,

Extension to Equally Important Multiple Goals n Because management is unconcerned about d 1+, d 2+, d 3–, and d 4+ these may be omitted from the objective function n The new objective function and constraints are Minimize total deviation = d 1– + d 2– + d 3+ + d 4– subject to 7 X 1 + 6 X 2 + d 1– – d 1+ = 30 2 X 1 + 3 X 2 + d 2– – d 2+ = 12 6 X 1 + 5 X 2 + d 3– – d 3+ = 30 X 2 + d 4– – d 4+ = 7 All Xi, di variables ≥ 0 (profit constraint) (wiring hours) (assembly hours) (ceiling fan constraint) © 2009 Prentice-Hall, Inc. 11 – 64

Ranking Goals with Priority Levels n In most goal programming problems, one goal will

Ranking Goals with Priority Levels n In most goal programming problems, one goal will be more important than another, which will in turn be more important than a third n Goals can be ranked with respect to their importance in management’s eyes n Higher-order goals are satisfied before lowerorder goals n Priorities (Pi’s) ’s are assigned to each deviational variable with the ranking so that P 1 is the most important goal, P 2 the next most important, P 3 the third, and so on © 2009 Prentice-Hall, Inc. 11 – 65

Ranking Goals with Priority Levels n Harrison Electric has set the following priorities for

Ranking Goals with Priority Levels n Harrison Electric has set the following priorities for their four goals GOAL PRIORITY Reach a profit as much above $30 as possible P 1 Fully use wiring department hours available P 2 Avoid assembly department overtime P 3 Produce at least seven ceiling fans P 4 © 2009 Prentice-Hall, Inc. 11 – 66

Ranking Goals with Priority Levels n This effectively means that each goal is infinitely

Ranking Goals with Priority Levels n This effectively means that each goal is infinitely more important than the next lower goal n With the ranking of goals considered, the new objective function is Minimize total deviation = P 1 d 1– + P 2 d 2– + P 3 d 3+ + P 4 d 4– n The constraints remain identical to the previous ones © 2009 Prentice-Hall, Inc. 11 – 67

Solving Goal Programming Problems Graphically n We can analyze goal programming problems graphically n

Solving Goal Programming Problems Graphically n We can analyze goal programming problems graphically n We must be aware of three characteristics of goal programming problems 1. Goal programming models are all minimization problems 2. There is no single objective, but multiple goals to be attained 3. The deviation from the high-priority goal must be minimized to the greatest extent possible before the next-highest-priority goal is considered © 2009 Prentice-Hall, Inc. 11 – 68

Solving Goal Programming Problems Graphically n Recall the Harrison Electric goal programming model Minimize

Solving Goal Programming Problems Graphically n Recall the Harrison Electric goal programming model Minimize total deviation = P 1 d 1– + P 2 d 2– + P 3 d 3+ + P 4 d 4– subject to 7 X 1 + 6 X 2 + d 1– – d 1+ = 30 (profit ) 2 X 1 + 3 X 2 + d 2– – d 2+ = 12 (wiring ) 6 X 1 + 5 X 2 + d 3– – d 3+ = 30 (assembly ) X 2 + d 4– – d 4+ = 7 (ceiling fans) All Xi, di variables≥ 0 (nonnegativity) where X 1 = number of chandeliers produced X 2 = number of ceiling fans produced © 2009 Prentice-Hall, Inc. 11 – 69

Solving Goal Programming Problems Graphically n To solve this we graph one constraint at

Solving Goal Programming Problems Graphically n To solve this we graph one constraint at a time starting with the constraint with the highestpriority deviational variables n In this case we start with the profit constraint as it has the variable d 1– with a priority of P 1 n Note that in graphing this constraint the deviational variables are ignored n To minimize d 1– the feasible area is the shaded region © 2009 Prentice-Hall, Inc. 11 – 70

Solving Goal Programming Problems Graphically n Analysis of the first goal X 2 7–

Solving Goal Programming Problems Graphically n Analysis of the first goal X 2 7– Minimize Z = P 1 d 1– 6– 5– 4– 3– d 1+ 2– d 1– 1– Figure 11. 4 0– 7 X 1 + 6 X 2 = 30 | | | 1 2 3 4 5 6 X 1 © 2009 Prentice-Hall, Inc. 11 – 71

Solving Goal Programming Problems Graphically n The next graph is of the second priority

Solving Goal Programming Problems Graphically n The next graph is of the second priority goal of minimizing d 2– n The region below the constraint line 2 X 1 + 3 X 2 = 12 represents the values for d 2– while the region above the line stands for d 2+ n To avoid underutilizing wiring department hours the area below the line is eliminated n This goal must be attained within the feasible region already defined by satisfying the first goal © 2009 Prentice-Hall, Inc. 11 – 72

Solving Goal Programming Problems Graphically n Analysis of first and second goals X 2

Solving Goal Programming Problems Graphically n Analysis of first and second goals X 2 7– Minimize Z = P 1 d 1– + P 2 d 2– 6– d 1+ 5– 4– 3– 2 X 1 + 3 X 2 = 12 2– 1– Figure 11. 5 0– d 2+ 7 X 1 + 6 X 2 = 30 d 2– | | | 1 2 3 4 5 6 X 1 © 2009 Prentice-Hall, Inc. 11 – 73

Solving Goal Programming Problems Graphically n The third goal is to avoid overtime in

Solving Goal Programming Problems Graphically n The third goal is to avoid overtime in the n n n assembly department We want d 3+ to be as close to zero as possible This goal can be obtained Any point inside the feasible region bounded by the first three constraints will meet the three most critical goals The fourth constraint seeks to minimize d 4– To do this requires eliminating the area below the constraint line X 2 = 7 which is not possible given the previous, higher priority, constraints © 2009 Prentice-Hall, Inc. 11 – 74

Solving Goal Programming Problems Graphically n Analysis of all four priority goals X 2

Solving Goal Programming Problems Graphically n Analysis of all four priority goals X 2 d 4+ 7– A 6– X 2 = 7 d 4– Minimize Z = P 1 d 1– + P 2 d 2– + P 3 d 3– + P 4 d 4– d 3+ 5 –D d 3– 4– d 1+ 3– C 2– 1– Figure 11. 6 0– d 2+ 6 X 1 + 5 X 2 = 30 B 2 X 1 + 3 X 2 = 12 7 X 1 + 6 X 2 = 30 | | | 1 2 3 4 5 6 X 1 © 2009 Prentice-Hall, Inc. 11 – 75

Solving Goal Programming Problems Graphically n The optimal solution must satisfy the first three

Solving Goal Programming Problems Graphically n The optimal solution must satisfy the first three goals and come as close as possible to satisfying the fourth goal n This would be point A on the graph with coordinates of X 1 = 0 and X 2 = 6 n Substituting into the constraints we find d 1– = $0 d 2– = 0 hours d 3– = 0 hours d 4– = 1 ceiling fan d 1+ = $6 d 2+ = 6 hours d 3+ = 0 hours d 4+ = 0 ceiling fans n A profit of $36 was achieved exceeding the goal © 2009 Prentice-Hall, Inc. 11 – 76

Modified Simplex Method for Goal Programming n The modified simplex method can be used

Modified Simplex Method for Goal Programming n The modified simplex method can be used to solve problems with more than two real variables n Recall the Harrison Electric model Minimize = P 1 d 1– + P 2 d 2– + P 3 d 3+ + P 4 d 4– subject to 7 X 1 + 6 X 2 + d 1– – d 1+ = 30 2 X 1 + 3 X 2 + d 2– – d 2+ = 12 6 X 1 + 5 X 2 + d 3– – d 3+ = 30 X 2 + d 4– – d 4+ = 7 All Xi, di variables≥ 0 © 2009 Prentice-Hall, Inc. 11 – 77

Modified Simplex Method for Goal Programming n Initial goal programming tableau SOLUTION MIX 0

Modified Simplex Method for Goal Programming n Initial goal programming tableau SOLUTION MIX 0 0 P 1 P 2 0 P 4 0 0 P 3 0 X 1 X 2 d 1– d 2– d 3– d 4– d 1+ d 2+ d 3+ d 4+ QUANTITY P 1 d 1– 7 6 1 0 0 0 – 1 0 0 0 30 P 2 d 2– 2 3 0 1 0 0 0 – 1 0 0 12 0 d 3– 6 5 0 0 1 0 0 0 – 1 0 30 P 4 d 4– 0 1 0 0 0 – 1 7 Zj P 4 0 1 0 0 0 – 1 7 P 3 0 0 0 P 2 2 3 0 1 0 0 0 – 1 0 0 12 P 1 7 6 1 0 0 0 – 1 0 0 0 30 P 4 0 – 1 0 0 0 0 1 P 3 0 0 0 0 1 0 P 2 – 3 0 0 0 1 0 0 P 1 – 7 – 6 0 0 1 0 0 0 Cj Cj – Zj Pivot column Table 11. 5 © 2009 Prentice-Hall, Inc. 11 – 78

Modified Simplex Method for Goal Programming n There are four features of the modified

Modified Simplex Method for Goal Programming n There are four features of the modified simplex tableau that differ from earlier simplex tableaus 1. The variables in the problem are listed at the top, with the decision variables (X 1 and X 2) first, then the negative deviational variables and, finally, the positive deviational variables. The priority level of each variable is assigned on the very top row. 2. The negative deviational variables for each constraint provide the initial basic solution. This is analogous to the use of slack variables in the earlier simplex tableaus. The priority level of each variable in the current solution mix is entered in the Cj column. © 2009 Prentice-Hall, Inc. 11 – 79

Modified Simplex Method for Goal Programming 3. There is a separate Xj and Cj

Modified Simplex Method for Goal Programming 3. There is a separate Xj and Cj – Zj row for each of the Pi priorities because different units of measurement are used for each goal. The bottom row of the tableau contains the highest ranked (P 1) goal, the next row has the P 2 goal, and so forth. The rows are computed exactly as in the regular simplex method, but they are done for each priority level. © 2009 Prentice-Hall, Inc. 11 – 80

Modified Simplex Method for Goal Programming 4. In selecting the variable to enter the

Modified Simplex Method for Goal Programming 4. In selecting the variable to enter the solution mix, we start with the highest-priority row, P 1, and select the most negative Cj – Zj value in it. If there was no negative number for P 1, we would move on to priority P 2’s Cj – Zj row and select the largest negative number there. A negative Cj – Zj that has a positive number in the P row underneath it, however, is ignored. This means that deviations from a more important goal (one in a lower row) would be increased if that variable were brought into the solution. © 2009 Prentice-Hall, Inc. 11 – 81

Modified Simplex Method for Goal Programming n We move towards the optimal solution just

Modified Simplex Method for Goal Programming n We move towards the optimal solution just as with the regular minimization simplex method n We find the pivot row by dividing the quantity values by their corresponding pivot column (X 1) values and picking the one with the smallest positive ratio n In this case, d 1– leaves the basis and is replaced by X 1 n We continue this process until an optimal solution is reached © 2009 Prentice-Hall, Inc. 11 – 82

Modified Simplex Method for Goal Programming n Second goal programming tableau SOLUTION MIX 0

Modified Simplex Method for Goal Programming n Second goal programming tableau SOLUTION MIX 0 0 P 1 P 2 0 P 4 0 0 P 3 0 X 1 X 2 d 1– d 2– d 3– d 4– d 1+ d 2+ d 3+ d 4+ QUANTITY 0 X 1 1 6/7 1/7 0 0 0 – 1/7 0 0 0 30/7 P 2 d 2– 0 9/7 – 2/7 1 0 0 2/7 – 1 0 0 24/7 0 d 3– 0 – 1/7 – 6/7 0 1 0 6/7 0 – 1 0 30/7 P 4 d 4– 0 1 0 0 0 – 1 7 Zj P 4 0 1 0 0 0 – 1 7 P 3 0 0 0 P 2 0 9/7 – 2/7 1 0 0 2/7 – 1 0 0 24/7 P 1 0 0 0 P 4 0 – 1 0 0 0 0 1 P 3 0 0 0 0 1 0 P 2 0 – 9/7 2/7 0 0 0 – 2/7 1 0 0 P 1 0 0 0 0 0 Cj Cj – Zj Pivot column Table 11. 6 © 2009 Prentice-Hall, Inc. 11 – 83

Modified Simplex Method for Goal Programming n Final solution to Harrison Electric's goal program

Modified Simplex Method for Goal Programming n Final solution to Harrison Electric's goal program SOLUTION MIX 0 0 P 1 P 2 0 P 4 0 0 P 3 0 X 1 X 2 d 1– d 2– d 3– d 4– d 1+ d 2+ d 3+ d 4+ QUANTITY 0 d 2+ 8/5 0 0 – 1 3/5 0 0 1 – 3/5 0 6 0 X 2 6/5 1 0 0 1/5 0 0 0 – 1/5 0 6 0 d 1+ 1/5 0 – 1 0 6/5 0 1 0 – 6/5 0 6 P 4 d 4– – 6/5 0 0 0 – 1/5 1 0 0 1/5 – 1 1 Zj P 4 – 6/5 0 0 0 – 1/5 1 0 0 1/5 – 1 1 P 3 0 0 0 P 2 0 0 0 P 1 0 0 0 0 1 0 0 P 4 6/5 0 0 0 1/5 0 0 0 – 1/5 1 P 3 0 0 0 0 1 0 P 2 0 0 0 1 0 0 0 P 1 0 0 0 0 0 Cj Cj – Zj Table 11. 7 © 2009 Prentice-Hall, Inc. 11 – 84

Modified Simplex Method for Goal Programming n In the final solution the first three

Modified Simplex Method for Goal Programming n In the final solution the first three goals have been fully achieved with no negative entries in their Cj – Zj rows n A negative value appears in the d 3+ column in the priority 4 row indicating this goal has not been fully attained n But the positive number in the d 3+ at the P 3 priority level (shaded cell) tells us that if we try to force d 3+ into the solution mix, it will be at the expense of the P 3 goal which has already been satisfied © 2009 Prentice-Hall, Inc. 11 – 85

Modified Simplex Method for Goal Programming n The final solution is X 1 =

Modified Simplex Method for Goal Programming n The final solution is X 1 = 0 chandeliers produced X 2 = 6 ceiling fans produced d 1+ = $6 over the profit goal d 2+ = 6 wiring hours over the minimum set d 4– = 1 fewer fan than desired © 2009 Prentice-Hall, Inc. 11 – 86

Goal Programming with Weighted Goals n Normally priority levels in goal programming n n

Goal Programming with Weighted Goals n Normally priority levels in goal programming n n assume that each level is infinitely more important than the level below it Sometimes this may not be desirable A goal may be only two or three times more important than another Instead of placing these goals on different levels, we place them on the same level but with different weights The coefficients of the deviation variables in the objective function include both the priority level and the weight © 2009 Prentice-Hall, Inc. 11 – 87

Goal Programming with Weighted Goals n Suppose Harrison decides to add another goal of

Goal Programming with Weighted Goals n Suppose Harrison decides to add another goal of producing at least two chandeliers n The goal of producing seven ceiling fans is considered twice as important as this goal n The goal of two chandeliers is assigned a weight of 1 and the goal of seven ceiling fans is assigned a weight of 2 and both of these will be priority level 4 n The new constraint and objective function are X 1 + d 5– – d 5+ = 2 (chandeliers) Minimize = P 1 d 1– + P 2 d 2– + P 3 d 3+ + P 4(2 d 4–) + P 4 d 5– © 2009 Prentice-Hall, Inc. 11 – 88

Using QM for Windows to Solve Harrison’s Problem n Harrison Electric’s goal programming analysis

Using QM for Windows to Solve Harrison’s Problem n Harrison Electric’s goal programming analysis using QM for Windows n This table refers to the formulation as presented in Table 11. 5 Program 11. 6 A © 2009 Prentice-Hall, Inc. 11 – 89

Using QM for Windows to Solve Harrison’s Problem n Final tableau for Harrison Electric

Using QM for Windows to Solve Harrison’s Problem n Final tableau for Harrison Electric using QM for Windows Program 11. 6 B © 2009 Prentice-Hall, Inc. 11 – 90

Using QM for Windows to Solve Harrison’s Problem n Summary solution screen for Harrison

Using QM for Windows to Solve Harrison’s Problem n Summary solution screen for Harrison Electric’s goal programming problem using QM for Windows Program 11. 6 C © 2009 Prentice-Hall, Inc. 11 – 91

Nonlinear Programming n The methods seen so far have all assumed that the problem's

Nonlinear Programming n The methods seen so far have all assumed that the problem's objective function and constraints are linear n Terms such as X 13, 1/X 2, log X 3, or 5 X 1 X 2 are not allowed n But there are many nonlinear relationships in the real world that would require the objective function, constraint equations, or both to be nonlinear n Excel can be used to solve these nonlinear programming (NLP) NLP problems © 2009 Prentice-Hall, Inc. 11 – 92

Nonlinear Objective Function and Linear Constraints n The Great Western Appliance Company sells two

Nonlinear Objective Function and Linear Constraints n The Great Western Appliance Company sells two models of toaster ovens, the Microtoaster (X 1) and the Self-Clean Toaster Oven (X 2) n They earn a profit of $28 for each Microtoaster no matter the number of units sold n For the Self-Clean oven, profits increase as more units are sold due to a fixed overhead n The profit function for the Self-Clean over may be expressed as 21 X 2 + 0. 25 X 22 © 2009 Prentice-Hall, Inc. 11 – 93

Nonlinear Objective Function and Linear Constraints n The objective function is nonlinear and there

Nonlinear Objective Function and Linear Constraints n The objective function is nonlinear and there are two linear constraints on production capacity and sales time available Maximize profit = 28 X 1 + 21 X 2 + 0. 25 X 22 subject to X 1 + 21 X 2 ≤ 1, 000 (units of production capacity) 0. 5 X 1 + 0. 4 X 2 ≤ 500 (hours of sales time available) X 1 , X 2 ≥ 0 n When an objective function contains a squared term and the problem constraints are linear, it is called a quadratic programming problem © 2009 Prentice-Hall, Inc. 11 – 94

Nonlinear Objective Function and Linear Constraints n An Excel formulation of Great Western’s problem

Nonlinear Objective Function and Linear Constraints n An Excel formulation of Great Western’s problem Program 11. 7 A © 2009 Prentice-Hall, Inc. 11 – 95

Nonlinear Objective Function and Linear Constraints n Solution to Great Western Appliance’s NLP problem

Nonlinear Objective Function and Linear Constraints n Solution to Great Western Appliance’s NLP problem using Excel Solver Program 11. 7 B © 2009 Prentice-Hall, Inc. 11 – 96

Both Nonlinear Objective Function and Nonlinear Constraints n The annual profit at a medium-sized

Both Nonlinear Objective Function and Nonlinear Constraints n The annual profit at a medium-sized (200 -400 beds) Hospicare Corporation hospital depends on the number of medical patients admitted (X 1) and the number of surgical patients admitted (X 2) n The objective function for the hospital is nonlinear n They have identified three constraints, two of which are nonlinear n Nursing capacity - nonlinear n X-ray capacity - nonlinear n Marketing budget required © 2009 Prentice-Hall, Inc. 11 – 97

Both Nonlinear Objective Function and Nonlinear Constraints n The objective function and constraint equations

Both Nonlinear Objective Function and Nonlinear Constraints n The objective function and constraint equations for this problem are Maximize profit = $13 X 1 + $6 X 1 X 2 + $5 X 2 + $1/X 2 subject to 2 X 12 + 4 X 2 ≤ 90 (nursing capacity in thousands of labor-days) X 1 + X 23 ≤ 75 (x-ray capacity in thousands) 8 X 1 – 2 X 2 ≤ 61 (marketing budget required in thousands of $) © 2009 Prentice-Hall, Inc. 11 – 98

Both Nonlinear Objective Function and Nonlinear Constraints n An Excel formulation of Hospicare’s NLP

Both Nonlinear Objective Function and Nonlinear Constraints n An Excel formulation of Hospicare’s NLP problem Program 11. 8 A © 2009 Prentice-Hall, Inc. 11 – 99

Both Nonlinear Objective Function and Nonlinear Constraints n Excel solution to the Hospicare Corp.

Both Nonlinear Objective Function and Nonlinear Constraints n Excel solution to the Hospicare Corp. NLP problem using Solver Program 11. 8 B © 2009 Prentice-Hall, Inc. 11 – 100

Linear Objective Function and Nonlinear Constraints n Thermlock Corp. produces massive rubber washers and

Linear Objective Function and Nonlinear Constraints n Thermlock Corp. produces massive rubber washers and gaskets like the type used to seal joints on the NASA Space Shuttles n It combines two ingredients, rubber (X 1) and oil (X 2) n The cost of the industrial quality rubber is $5 per pound and the cost of high viscosity oil is $7 per pound n Two of the three constraints are nonlinear © 2009 Prentice-Hall, Inc. 11 – 101

Linear Objective Function and Nonlinear Constraints n The firm’s objective function and constraints are

Linear Objective Function and Nonlinear Constraints n The firm’s objective function and constraints are Minimize costs = $5 X 1 + $7 X 2 subject to $5 X 1 + 0. 25 X 12 + 4 X 2 + 0. 3 X 22 ≥ 125 13 X 1 0. 7 X 1 + X 1 3 ≥ 80 + X 2 ≥ 17 (hardness constraint) (tensile strength) (elasticity) © 2009 Prentice-Hall, Inc. 11 – 102

Linear Objective Function and Nonlinear Constraints n Excel formulation of Thermlock’s NLP problem Program

Linear Objective Function and Nonlinear Constraints n Excel formulation of Thermlock’s NLP problem Program 11. 9 A © 2009 Prentice-Hall, Inc. 11 – 103

Linear Objective Function and Nonlinear Constraints n Solution to Thermlock’s NLP problem using Excel

Linear Objective Function and Nonlinear Constraints n Solution to Thermlock’s NLP problem using Excel Solver Program 11. 9 B © 2009 Prentice-Hall, Inc. 11 – 104

Computational Procedures for Nonlinear Programming n Computational procedures for nonlinear n n n problems

Computational Procedures for Nonlinear Programming n Computational procedures for nonlinear n n n problems do not always yield an optimal solution in a finite number of steps There is no general method for solving all nonlinear problems Classical optimization techniques based on calculus can handle some simpler problems The gradient method (sometimes called the steepest ascent method) method is an iterative procedure that moves from one feasible solution to the next improving the objective function © 2009 Prentice-Hall, Inc. 11 – 105

Computational Procedures for Nonlinear Programming n The best way to deal with nonlinear problems

Computational Procedures for Nonlinear Programming n The best way to deal with nonlinear problems may be to reduce them to a linear or near-linear form n Separable programming deals with a class of problems in which the objective and constraints are approximated by linear functions n The simplex algorithm may then be applied n In general, work in the area of NLP is the most difficult of all the quantitative analysis models © 2009 Prentice-Hall, Inc. 11 – 106