CEPC APDR SRF considerations Zhenchao LIU 2016 5

  • Slides: 24
Download presentation
CEPC APDR SRF considerations Zhenchao LIU 2016. 5. 25

CEPC APDR SRF considerations Zhenchao LIU 2016. 5. 25

Primary parameter for CEPC double ring (wangdou 20160219) Number of IPs Energy (Ge. V)

Primary parameter for CEPC double ring (wangdou 20160219) Number of IPs Energy (Ge. V) Circumference (km) SR loss/turn (Ge. V) Half crossing angle (mrad) Piwinski angle Ne/bunch (1011) Bunch number Beam current (m. A) SR power /beam (MW) Bending radius (km) Momentum compaction (10 -5) IP x/y (m) Emittance x/y (nm) Transverse IP (um) x/IP y/IP VRF (GV) f RF (MHz) Nature z (mm) Total z (mm) HOM power/cavity (kw) Energy spread (%) Energy acceptance by RF (%) n Life time due to beamstrahlung_cal (minute) F (hour glass) Lmax/IP (1034 cm-2 s-1) Pre-CDR H-high lumi. H-low power Z 2 120 54 3. 1 0 0 3. 79 50 16. 6 51. 7 6. 1 3. 4 0. 8/0. 0012 6. 12/0. 018 69. 97/0. 15 0. 118 0. 083 6. 87 650 2. 14 2. 65 3. 6 0. 13 2 6 0. 23 47 2 120 54 2. 96 14. 5 2 3. 79 50 16. 9 50 6. 2 3. 0 0. 306/0. 0012 3. 34/0. 01 32/0. 11 0. 04 0. 11 3. 7 650 3. 3 4. 4 3. 3 0. 13 2 2. 2 0. 49 53 15 2. 85 50 16. 9 50 6. 2 2. 5 0. 25/0. 00136 2. 45/0. 0074 24. 8/0. 1 0. 03 0. 11 3. 62 650 3. 1 4. 1 2. 2 0. 13 2 2. 2 0. 47 36 11. 5 2 2. 81 40 10. 1 30 6. 2 2. 6 0. 22/0. 001 2. 67/0. 008 24. 3/0. 09 0. 04 0. 11 3. 6 650 3. 2 4. 2 1. 5 0. 13 2 2. 2 0. 47 41 15 2. 67 44 10. 5 31. 2 6. 2 2. 2 0. 268 /0. 00124 2. 06 /0. 0062 23. 5/0. 088 0. 032 0. 11 3. 53 650 3. 0 4. 0 1. 3 0. 13 2 2. 1 0. 47 32 2 45. 5 54 0. 062 15 8. 5 0. 46 1100 45. 4 2. 8 6. 1 3. 5 0. 08/0. 001 0. 62/0. 002 7/0. 046 0. 005 0. 084 0. 12 650 3. 9 4. 0 0. 99 0. 05 0. 68 2. 04 0. 73 2. 97 0. 82 2. 96 0. 69 2. 03 0. 81 2. 01 1. 1 0. 27 0. 95 3. 61

Advantage: bypass (pp) • Avoid pretzel orbit • Accommodate more bunches at Z/W energy

Advantage: bypass (pp) • Avoid pretzel orbit • Accommodate more bunches at Z/W energy • Reduce AC power with crab waist collision bypass (pp)

Input power requirements(at CEPC meeting 2016. 4. 8) • The input power in pulse

Input power requirements(at CEPC meeting 2016. 4. 8) • The input power in pulse should be equal to the beam power of bunch train (if do not consider reflection ……). • Or the bunch distance from each other is enough to power up the cavity field again. • Higher Eacc is much better when input power is not enough as the stored energy in cavity is proportional to Eacc^2. • Reliable ceramic window for the high peak input power. • The design is very challenging for the RF!!!!!

New idea:APDR

New idea:APDR

New SRF layout IP 1 RF station Double Ring (1 km/3 km) C≈60 km

New SRF layout IP 1 RF station Double Ring (1 km/3 km) C≈60 km RF&DR center 30°equispaced IP 3

bunch 3. 3 us t 26. 7 us

bunch 3. 3 us t 26. 7 us

Wangdou 20160219 Number of IPs Energy (Ge. V) Circumference (km) SR loss/turn (Ge. V)

Wangdou 20160219 Number of IPs Energy (Ge. V) Circumference (km) SR loss/turn (Ge. V) Half crossing angle (mrad) Piwinski angle Ne/bunch (1011) Bunch number Beam current (m. A) SR power /beam (MW) Bending radius (km) Momentum compaction (10 -5) IP x/y (m) Emittance x/y (nm) Transverse IP (um) x/IP y/IP VRF (GV) f RF (MHz) Nature z (mm) Total z (mm) HOM power/cavity (kw) Energy spread (%) Energy acceptance by RF (%) n Life time due to beamstrahlung_cal (minute) F (hour glass) Lmax/IP (1034 cm-2 s-1) Pre-CDR H-high lumi. H-low power Z 2 120 54 3. 1 0 0 3. 79 50 16. 6 51. 7 6. 1 3. 4 0. 8/0. 0012 6. 12/0. 018 69. 97/0. 15 0. 118 0. 083 6. 87 650 2. 14 2. 65 3. 6 0. 13 2 6 0. 23 47 2 120 54 2. 96 14. 5 2 3. 79 50 16. 9 50 6. 2 3. 0 0. 306/0. 0012 3. 34/0. 01 32/0. 11 0. 04 0. 11 3. 7 650 3. 3 4. 4 3. 3 0. 13 2 2. 2 0. 49 53 15 2. 85 50 16. 9 50 6. 2 2. 5 0. 25/0. 00136 2. 45/0. 0074 24. 8/0. 1 0. 03 0. 11 3. 62 650 3. 1 4. 1 2. 2 0. 13 2 2. 2 0. 47 36 11. 5 2 2. 81 40 10. 1 30 6. 2 2. 6 0. 22/0. 001 2. 67/0. 008 24. 3/0. 09 0. 04 0. 11 3. 6 650 3. 2 4. 2 1. 5 0. 13 2 2. 2 0. 47 41 15 2. 67 44 10. 5 31. 2 6. 2 2. 2 0. 268 /0. 00124 2. 06 /0. 0062 23. 5/0. 088 0. 032 0. 11 3. 53 650 3. 0 4. 0 1. 3 0. 13 2 2. 1 0. 47 32 2 45. 5 54 0. 062 15 8. 5 0. 46 1100 45. 4 2. 8 6. 1 3. 5 0. 08/0. 001 0. 62/0. 002 7/0. 046 0. 005 0. 084 0. 12 650 3. 9 4. 0 0. 99 0. 05 0. 68 2. 04 0. 73 2. 97 0. 82 2. 96 0. 69 2. 03 0. 81 2. 01 1. 1 0. 27 0. 95 3. 61

Zhaijiyuan 20160327 PDR(HL) Zhaijiyuan 20160327&0408 APDR (H-low power) APDR (Z) 2 120 54 3.

Zhaijiyuan 20160327 PDR(HL) Zhaijiyuan 20160327&0408 APDR (H-low power) APDR (Z) 2 120 54 3. 1 0 0 3. 79 1 16. 6 53. 2 6. 1 6. 87 650 384 15. 8 63. 1 275 / 105. 6 5 4 6 96 514 268 1. 8 3. 6 2 4 E 10 1. 156 2. 36 e 6 0. 28 2 120 54 2. 96 15 2. 85 1 16. 96 51 6. 2 3. 65 650 384 20. 6 35. 2 263. 4 2220 382. 5 2 6 10 64 206 268 0. 54 0. 8 2 2 E 10 0. 097 1. 97 e 5 3. 3 2 120 54 2. 96 15 2. 67 15 x 3 10. 5 31. 2 6. 2 5. 16 650 498 22. 6 55. 5 -55 126 1148 62. 7 2 4(3) 21 126 206 268 0. 54 0. 485 2 2 E 10 2. 045 4. 18 e 6 0. 077 2 45. 5 54 0. 062 15 8. 5 0. 46 367 x 3 45. 4 2. 8 6. 1 0. 357 650 48 16. 2 80. 2 -79. 8 117 1237 5. 6 2 4 2 12 206 268 0. 54 0. 361 2 2 E 10 2. 243 4. 58 e 6 0. 071 -0. 27 158. 7 5. 484 / 100 -1. 16 107. 4 5. 484 0. 3 -160 27% -0. 111 126. 9 5. 484 26. 7 ~100 -0. 234 65. 3 5. 484 26. 7 ~100 Pre-CDR Number of IPs Energy (Ge. V) Circumference (km) SR loss/turn (Ge. V) Half crossing angle (mrad) Piwinski angle Ne/bunch (1011) Bunch number Beam current (m. A) SR power /beam (MW) Bending radius (km) VRF (GV) f RF (MHz) Cavity No. Cavity gradient Accelerating phase CW power/cavity (k. W) Peak power/train (k. W) Total Power (MW) Cell/cavity Cavity/module Module/station Total module R/Q (Ω) G HOM loss factor/cavity (V/p. C) HOM power/cavity (k. W) Working Temperature(K) Q 0 τ(ms) QL Bandwidth(k. Hz) Detuning F (k. Hz) Stored energy/cavity(J) Frev(k. Hz) Gap length (us) η(RF to beam efficiency)(%)

Accelerator gradient decrease in one RF cavity (Z) Bunch train passing Bunch train space

Accelerator gradient decrease in one RF cavity (Z) Bunch train passing Bunch train space Final Eacc/Initial Eacc Assume matching Initial Eacc(MV/m) RF cycles Field evolution in cavity Field decrease vs. various initial field gradient of the cavity

Accelerator gradient decrease in one RF cavity (H-Low power) Final Eacc/Initial Eacc Assume matching

Accelerator gradient decrease in one RF cavity (H-Low power) Final Eacc/Initial Eacc Assume matching Initial Eacc(MV/m) RF cycles Field evolution in cavity Field decrease vs. various initial field gradient of the cavity

New SRF layout IP 1 RF station Double Ring (1 km/3 km) C≈62 km

New SRF layout IP 1 RF station Double Ring (1 km/3 km) C≈62 km RF&DR center 22. 5°equispaced IP 3

bunch 3. 3 us t 20 us

bunch 3. 3 us t 20 us

Accelerator gradient decrease in one RF cavity (Z) Final Eacc/Initial Eacc Assume matching Initial

Accelerator gradient decrease in one RF cavity (Z) Final Eacc/Initial Eacc Assume matching Initial Eacc(MV/m) RF cycles Field evolution in cavity Field decrease vs. various initial field gradient of the cavity

Accelerator gradient decrease in one RF cavity (H-Low power) Final Eacc/Initial Eacc Assume matching

Accelerator gradient decrease in one RF cavity (H-Low power) Final Eacc/Initial Eacc Assume matching Initial Eacc(MV/m) RF cycles Field evolution in cavity Field decrease vs. various initial field gradient of the cavity

Zhaijiyuan 20160327 PDR(HL) Zhaijiyuan 20160327&0408 APDR (H-low power) APDR (Z) 2 120 54 3.

Zhaijiyuan 20160327 PDR(HL) Zhaijiyuan 20160327&0408 APDR (H-low power) APDR (Z) 2 120 54 3. 1 0 0 3. 79 1 16. 6 53. 2 6. 1 6. 87 650 384 15. 8 63. 1 275 / 105. 6 5 4 6 96 514 268 1. 8 3. 6 2 4 E 10 1. 156 2. 36 e 6 0. 28 2 120 54 2. 96 15 2. 85 1 16. 96 51 6. 2 3. 65 650 384 20. 6 35. 2 263. 4 2220 382. 5 2 6 10 64 206 268 0. 54 0. 8 2 2 E 10 0. 097 1. 97 e 5 3. 3 2 120 54 2. 96 15 2. 67 11 x 4 10. 5 31. 2 6. 2 5. 16 650 498 22. 6 55. 3 -55 126 843 62. 7 2 6(3, 2) 10(11) 126 206 268 0. 54 0. 485 2 2 E 10 2. 045 4. 18 e 6 0. 077 2 45. 5 54 0. 062 15 8. 5 0. 46 275 x 4 45. 4 2. 8 6. 1 0. 357 650 48 16. 2 80. 1 -79. 9 117 884 5. 6 2 6 1 12 206 268 0. 54 0. 361 2 2 E 10 2. 243 4. 58 e 6 0. 071 -0. 27 158. 7 5. 484 / 100 -1. 16 107. 4 5. 484 0. 3 -160 27% -0. 111 126. 9 5. 484 20 ~100 -0. 234 65. 3 5. 484 20 ~100 Pre-CDR Number of IPs Energy (Ge. V) Circumference (km) SR loss/turn (Ge. V) Half crossing angle (mrad) Piwinski angle Ne/bunch (1011) Bunch number Beam current (m. A) SR power /beam (MW) Bending radius (km) VRF (GV) f RF (MHz) Cavity No. Cavity gradient Accelerating phase CW power/cavity (k. W) Peak power/train (k. W) Total Power (MW) Cell/cavity Cavity/module Module/station Total module R/Q (Ω) G HOM loss factor/cavity (V/p. C) HOM power/cavity (k. W) Working Temperature(K) Q 0 τ(ms) QL Bandwidth(k. Hz) Detuning F (k. Hz) Stored energy/cavity(J) Frev(k. Hz) Gap length (us) η(RF to beam efficiency)(%)

Question? • Can the 4 bunch or 3 bunch structure be calculated as CW

Question? • Can the 4 bunch or 3 bunch structure be calculated as CW mode? • Stable state:Vb=Vc, ψ=-ϕs • Vb(no beam period): – e^-t/τ=e^-27/2045=0. 987 – e^-t/τ=e^-27/2243=0. 988 – e^-t/τ=e^-27/2045=0. 99 – e^-t/τ=e^-20/2243=0. 991 • Vc(no beam period): – 0. 983→ 1 ; 0. 99→ 1;

LEPII LEP layout

LEPII LEP layout

LEP II

LEP II

What is the best β? Pulse period optimum QL=4. 5 e 5 β=0. 3

What is the best β? Pulse period optimum QL=4. 5 e 5 β=0. 3 β= P-/P+ β=4366 β=1 0. 8 t/τ 0. 6 0. 4 t/τ 0. 2 0. 3

What is the best cavity for APDR? • R/Q=Vc 2/ωU • A lower R/Q

What is the best cavity for APDR? • R/Q=Vc 2/ωU • A lower R/Q can give a high U at the same cavity voltage (or gradient) • The gradient is more stable at higher U when the input power is not enough at the pulse period. • It is an opposite design scheme comparing with low-loss cavity or others • Reduced R/Q can also decrease the detuning frequency • R/Q Riris loss factor • Cavity can work at a lower gradient with the same U

Thanks!

Thanks!