Cavity quantum electrodynamics for superconducting electrical circuits An

  • Slides: 30
Download presentation
Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computing Student Presentation

Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computing Student Presentation Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 1

Presentation Overview § Introduction to Theory § § Atom in Cavity (Jaynes-Cummings-Hamiltonian) Energy Levels

Presentation Overview § Introduction to Theory § § Atom in Cavity (Jaynes-Cummings-Hamiltonian) Energy Levels and Energy Levels Splitting Decay Channels Cases: Zero and Strong Detuning § Introduction to Circuit § Components of Circuit § Analogue of Atom in Cavity and TL CPB system § Readout in dispersive regime Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 2

Revision: Jaynes-Cummings Hamiltonian § Hamiltonian of a two-level atom interacting with a photon in

Revision: Jaynes-Cummings Hamiltonian § Hamiltonian of a two-level atom interacting with a photon in a cavity Martin Butterschön & Leandro von Werra Martin Buttenschön & Leandro von Werra | 1. 12. 2014 15. 04. 2016 | 3

Revision: Jaynes-Cummings Hamiltonian, Interaction Term Dipole Moment: Martin Buttenschön & Leandro von Werra Martin

Revision: Jaynes-Cummings Hamiltonian, Interaction Term Dipole Moment: Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 4

Revision: Jaynes-Cummings Hamiltonian, Interaction Term Jaynes-Cummings Hamiltonian Martin Butterschön & Leandro von Werra Martin

Revision: Jaynes-Cummings Hamiltonian, Interaction Term Jaynes-Cummings Hamiltonian Martin Butterschön & Leandro von Werra Martin Buttenschön & Leandro von Werra | 1. 12. 2014 15. 04. 2016 | 5

Eigenstates Case : Martin Butterschön & Leandro von Werra Martin Buttenschön & Leandro von

Eigenstates Case : Martin Butterschön & Leandro von Werra Martin Buttenschön & Leandro von Werra | 1. 12. 2014 15. 04. 2016 | 6

Energy Levels and Energy Level Splitting Zero Detuning: Martin Buttenschön & Leandro von Werra

Energy Levels and Energy Level Splitting Zero Detuning: Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 7

Eigenstates Case : Martin Butterschön & Leandro von Werra Martin Buttenschön & Leandro von

Eigenstates Case : Martin Butterschön & Leandro von Werra Martin Buttenschön & Leandro von Werra | 1. 12. 2014 15. 04. 2016 | 8

Energy Levels and Energy Level Splitting Zero Detuning: Detuned: xx Martin Buttenschön & Leandro

Energy Levels and Energy Level Splitting Zero Detuning: Detuned: xx Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 9

Decay Channels Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra

Decay Channels Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 10

Decay Terms in the Hamiltonian Strong coupling Make as big and as small as

Decay Terms in the Hamiltonian Strong coupling Make as big and as small as possible! Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 11

Q-Factor of a Cavity (FWHM) Sharp resonance High Q-Factor Martin Buttenschön & Leandro von

Q-Factor of a Cavity (FWHM) Sharp resonance High Q-Factor Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 12

Calculation of Rabi Frequency Definition: get Martin Buttenschön & Leandro von Werra Martin Butterschön

Calculation of Rabi Frequency Definition: get Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 13

Presentation Overview § Introduction to Theory § § Atom in Cavity (Jaynes-Cummings-Hamiltonian) Energy Levels

Presentation Overview § Introduction to Theory § § Atom in Cavity (Jaynes-Cummings-Hamiltonian) Energy Levels and Energy Levels Splitting Decay Channels Cases: Zero and Strong Detuning § Introduction to Circuit § Components of Circuit § Analogue of Atom in Cavity and TL CPB system § Readout in dispersive regime Martin Buttenschön & Leandro von Werra Martin Butterschön & Leandro von Werra | 15. 04. 2016 1. 12. 2014 | 14

How to access strong coupling regime? § Martin Buttenschön & Leandro von Werra |

How to access strong coupling regime? § Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 15

For comparable 3 D vs 1 D system, 1 D has greater coupling Martin

For comparable 3 D vs 1 D system, 1 D has greater coupling Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 16

Cavity Quantum Electrodynamics: Two analogous systems § Coupled optical cavity and two-level system §

Cavity Quantum Electrodynamics: Two analogous systems § Coupled optical cavity and two-level system § Coupled transmission line resonator and superconducting qubit Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 17

Transmission Line Component (~cavity) Source: Wallraff, A: ”Exploring Quantum Physics with Superconducting Qubits” Martin

Transmission Line Component (~cavity) Source: Wallraff, A: ”Exploring Quantum Physics with Superconducting Qubits” Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 18

Cooper Pair Box (~atom) - already covered in class charge island Martin Buttenschön &

Cooper Pair Box (~atom) - already covered in class charge island Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 19

 TL cavity + Cooper Pair Box = Circuit Implementation of Cavity QED system

TL cavity + Cooper Pair Box = Circuit Implementation of Cavity QED system Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 20

 § The electric field and from the 3 D cavity so using parallel

§ The electric field and from the 3 D cavity so using parallel plate capacitance and mode volume Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 21

 § Energy of coupling capacitor: § Where so is the factor of effective

§ Energy of coupling capacitor: § Where so is the factor of effective capacity § from before so Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 22

Wrap-up: What did I show you so far? § Two equivalent systems § The

Wrap-up: What did I show you so far? § Two equivalent systems § The same physical understanding applies to both Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 23

 § Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 24

§ Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 24

There are many other implementations of CQED: So why is this system so popular?

There are many other implementations of CQED: So why is this system so popular? § Small effective volume § On-chip realization § (with existing lithographic technology) § Strongly suppressed spontaneous emission § (also true for Rydberg atoms or 3 D cavities) § Very large Rabi frequency § Coupling remains constant § (as qubit remains fixed in positions) § Easy read-out Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 25

Sources § Blais, A; Huang R; Wallraff, A; Girvin SM; and RJ Schoelkopf: ”Cavity

Sources § Blais, A; Huang R; Wallraff, A; Girvin SM; and RJ Schoelkopf: ”Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation”. Physical Review A 69 (2004). § Thiele, T: ”Coherent manipulation of Rydberg atoms close to surfaces at cryogenic temperatures”. 2016. Unpublished doctoral dissertation. ETH Zürich. § Walter, T: ”Introduction to Quantum Information Science”. 2016. Lecture Notes for QSIT taught by Andreas Wallraff. ETH Zürich. Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 26

Thanks to Tobias on guiding and coaching us Martin Buttenschön & Leandro von Werra

Thanks to Tobias on guiding and coaching us Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 27

Transmission Line Component (~cavity) § Transverse electromagnetic modes BACKUP § Circuit Model for transmission

Transmission Line Component (~cavity) § Transverse electromagnetic modes BACKUP § Circuit Model for transmission line Source: Wallraff, A: ”Exploring Quantum Physics with Superconducting Qubits” Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 28

To the QED system BACKUP complete CPB Hamiltonian in Number basis Martin Buttenschön &

To the QED system BACKUP complete CPB Hamiltonian in Number basis Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 29

BACKUP Hamiltonian for dispersive regime is equivalently Martin Buttenschön & Leandro von Werra |

BACKUP Hamiltonian for dispersive regime is equivalently Martin Buttenschön & Leandro von Werra | 15. 04. 2016 | 30