Average Fe K emission from distant AGN Amalia

  • Slides: 27
Download presentation
Average Fe Kα emission from distant AGN Amalia Corral IFCA(Santander)/OAB(Milano) M. J. Page: MSSL

Average Fe Kα emission from distant AGN Amalia Corral IFCA(Santander)/OAB(Milano) M. J. Page: MSSL (UCL), UK F. J. Carrera, X. Barcons, J. Ebrero: IFCA (CSIC-UC), Spain S. Mateos, J. A. Tedds, M. G. Watson: University of Leicester, UK A. Schwope, M. Krumpe: Astrophysikalisches Institut Postdam, Germany X-ray Universe 2008, Granada, 27 th May 2008

Introduction n n Non-rotating known to be BH XRBInclination (X-Ray Background) is composed of

Introduction n n Non-rotating known to be BH XRBInclination (X-Ray Background) is composed of discrete sources, most of them angle are AGN. Maximum-rotating BH ingredients : XRB synthesis models, - AGN intrinsic column density and acretion rate distribution and their evolution as a function of Luminosity and redshift. - Average radiative efficiency of accretion onto Supermassive Black Holes -> Measure from Fe line relativistic profile.

Previous Results n n Local samples: EW(relativistic) ~ 100 -200 e. V (Guainazzi+06, Nandra+07)

Previous Results n n Local samples: EW(relativistic) ~ 100 -200 e. V (Guainazzi+06, Nandra+07) Distant AGN -> average or stack many spectra together: EW(relativistic) ~ 400 (type 1) - 600(type 2) e. V (Streblyanska+05, Brusa+05)

Our sample n n AGN from the AXIS (An International XMMNewton Survey) and XWAS

Our sample n n AGN from the AXIS (An International XMMNewton Survey) and XWAS (XMM-Newton Wide Angle Survey) medium surveys (average flux ~ 5 x 10 -14 erg cm-2 s-1). Optical spectroscopic identifications (>80 counts 0. 2 -12 ke. V): Type 1 AGN: 606 sources Type 2 AGN: 117 sources

Our sample n Sample selection: Individual spectra > 80 counts in 0. 2 -12

Our sample n Sample selection: Individual spectra > 80 counts in 0. 2 -12 ke. V

Averaging method n n n Fit an absorbed power law above 1 ke. V

Averaging method n n n Fit an absorbed power law above 1 ke. V restframe and unfold the un-grouped spectra: best-fit model. Correct for Galactic Absorption. Shift to rest-frame. Normalize using the 2 -5 ke. V rest-frame band. Rebin to 1000 final counts/bin. Average.

Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Fit

Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Fit simple power law in 2 -10 ke. V : Type 1: Γ=1. 92± 0. 02 Type 2: Γ=1. 44± 0. 02

Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Broad

Results Type 1 AGN > 200000 counts Type 2 AGN ~ 30000 counts Broad relativistic profile not clearly present

Simulations n n 100 simulations (best-fit model) per real spectrum including Poisson counting noise

Simulations n n 100 simulations (best-fit model) per real spectrum including Poisson counting noise and keeping the same 2 -8 ke. V observed flux, exposure time and calibration matrices as for the real data. Significance contours by removing the 32% (1σ level) and 5% (2σ level) extreme values.

Results ·· 1σ confidence limit -- 2σ confidence limit ● ▪ Simulated continuum Average

Results ·· 1σ confidence limit -- 2σ confidence limit ● ▪ Simulated continuum Average spectrum

Results ·· 1σ confidence limit -- 2σ confidence limit ● ▪ Simulated continuum Average

Results ·· 1σ confidence limit -- 2σ confidence limit ● ▪ Simulated continuum Average spectrum

Spectral fit n o o Baseline model: 100 -simulations continuum: mixture of absorbed power

Spectral fit n o o Baseline model: 100 -simulations continuum: mixture of absorbed power laws. Narrow emission line.

Spectral fit – Type 1 AGN n Best-fit model: Baseline model plus neutral reflection:

Spectral fit – Type 1 AGN n Best-fit model: Baseline model plus neutral reflection: Egaus = 6. 36± 0. 05 ke. V σgaus = 80± 80 e. V EWgaus = 90± 30 e. V i = 60± 20º R=0. 5± 0. 20

Spectral fit – Type 1 AGN n Best-fit model: Baseline model plus neutral reflection:

Spectral fit – Type 1 AGN n Best-fit model: Baseline model plus neutral reflection: Egaus = 6. 36± 0. 05 ke. V σgaus = 80± 80 e. V EWgaus = 90± 30 e. V i = 60± 20º R=0. 5± 0. 20

Spectral fit – Type 1 AGN n Best-fit model: Baseline model plus neutral reflection:

Spectral fit – Type 1 AGN n Best-fit model: Baseline model plus neutral reflection: EW(broad relativistic line) < 400 e. V Egauslevel = 6. 36± 0. 05 ke. V at 3σ confidence σgaus = 80± 80 e. V EWgaus = 90± 30 e. V i = 60± 20º R=0. 5± 0. 20

Spectral fit – Type 2 AGN n Model: Baseline model plus neutral reflection: Egaus

Spectral fit – Type 2 AGN n Model: Baseline model plus neutral reflection: Egaus = 6. 36± 0. 07 ke. V σgaus = 80± 60 e. V EWgaus = 70± 30 e. V i < 80 R > 0. 7

Spectral fit – Type 2 AGN n Model: Baseline model plus neutral reflection: Egaus

Spectral fit – Type 2 AGN n Model: Baseline model plus neutral reflection: Egaus = 6. 36± 0. 07 ke. V σgaus = 80± 60 e. V EWgaus = 70± 30 e. V i < 80 R > 0. 7

Spectral fit – Type 2 AGN n Model: Baseline model plus Laor line: Egaus

Spectral fit – Type 2 AGN n Model: Baseline model plus Laor line: Egaus = 6. 36± 0. 07 ke. V Elaor ~ 6. 7 ke. V σgaus = 80± 60 e. V EWgaus = 70± 40 e. V EWlaor ~ 300 e. V i ~ 60º

Spectral fit – Type 2 AGN n Model: Baseline model plus Laor line: Egaus

Spectral fit – Type 2 AGN n Model: Baseline model plus Laor line: Egaus = 6. 36± 0. 07 ke. V Elaor ~ 6. 7 ke. V σgaus = 80± 60 e. V EWgaus = 70± 40 e. V EWlaor ~ 300 e. V i ~ 60º

Spectral fit – Type 2 AGN n Model: Baseline model plus Laor line: Neutral

Spectral fit – Type 2 AGN n Model: Baseline model plus Laor line: Neutral reflection and Relativistic Egaus = 6. 36± 0. 07 ke. V line give the same fit E ~ 6. 7 ke. V Elaor ~ 6. 7 ke. V σgaus = 80± 60 e. V EWgaus = 70± 40 e. V EWlaor ~ 300 e. V i ~ 60º

Type 1 AGN: sub-samples n Number of counts 2 -10 ke. V > 2

Type 1 AGN: sub-samples n Number of counts 2 -10 ke. V > 2 x 105 allow us to test evolution with different parameters by dividing the sample in 3 subsamples of equality (i. e. number of total counts): redshift, flux and luminosity. n We found no dependence for the emission features on redshift or flux. n Dependence on Luminosity -> Iwasawa. Taniguchi effect?

Type 1 AGN: sub-samples L(0. 5 -2 ke. V) (erg s-1) EW narrow line

Type 1 AGN: sub-samples L(0. 5 -2 ke. V) (erg s-1) EW narrow line (e. V) 1 x 1042 – 2 x 1044 190± 50 2 x 1044 – 6 x 1044 150± 80 6 x 1044 – 6 x 1046 50± 40

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6. 4 ke. V, EW ~ 100 e. V. Type 1 AGN: No compelling evidence of a Broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 e. V (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6. 4 ke. V, EW ~ 100 e. V. Type 1 AGN: No compelling evidence of a Broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 e. V (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6. 4 ke. V, EW ~ 100 e. V. Type 1 AGN: No compelling evidence of a broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 e. V (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type

Conclusions n n n Narrow emission line significatively detected in Type 1 and Type 2 AGN average spectra. E ~ 6. 4 ke. V, EW ~ 90 e. V. Type 1 AGN: No compelling evidence of a broad component in the average spectrum. Continuum features best represented by a reflection component. Relativistic line upper limit EW<400 e. V (3σ confidence). Iwasawa-Taniguchi effect for narrow line component marginally detected. Type 2 AGN: Statistics insufficient to distinguish between a relativistic line and a reflection component.

THANK YOU

THANK YOU