Autonomous Quantum Error Correction Joachim Cohen QUANTIC Outline

  • Slides: 28
Download presentation
Autonomous Quantum Error Correction Joachim Cohen QUANTIC

Autonomous Quantum Error Correction Joachim Cohen QUANTIC

Outline I. Why quantum information processing ? II. Classical bits vs. Quantum bits III.

Outline I. Why quantum information processing ? II. Classical bits vs. Quantum bits III. Quantum Error Correction

WHY QUANTUM INFORMATION PROCESSING ?

WHY QUANTUM INFORMATION PROCESSING ?

Why quantum information processing ? • Cryptography : quantum key distribution • Quantum simulator

Why quantum information processing ? • Cryptography : quantum key distribution • Quantum simulator : simulation of quantum systems • Quantum algorithms : Shor’s algorithm on prime number factorization in polynomial time

CLASSICAL BITS VS. QUANTUM BITS

CLASSICAL BITS VS. QUANTUM BITS

Classical Bit : Bistable system Bit : State 0 ou 1 Courtesy of Michel

Classical Bit : Bistable system Bit : State 0 ou 1 Courtesy of Michel Devoret, Collège de France, 2010

Classical Bit : Bistable system 0 U(x) 1 ΔU x noise k. BT :

Classical Bit : Bistable system 0 U(x) 1 ΔU x noise k. BT : friction coefficient • friction • thermal noise k. BT<<ΔU

Quantum physics ? Quantum bit (Qubit) ?

Quantum physics ? Quantum bit (Qubit) ?

Spring : Classical case k x m Harmonic potential No dissipation : constant energy

Spring : Classical case k x m Harmonic potential No dissipation : constant energy E Large A 2 Small A 2 x

Quantum Mechanics : System energy is quantified ! Example : Light photon ISH FIN

Quantum Mechanics : System energy is quantified ! Example : Light photon ISH FIN 1, 2, 3, … , N, … ! Energy = N*hω ! Light energy is quantified ! photodetector

Spring : Quantum case • Discrete set of stationnary energy states : ψ0(x), ψ1(x),

Spring : Quantum case • Discrete set of stationnary energy states : ψ0(x), ψ1(x), ψ2(x), ψ3(x). . . L 2 functions associated to energies E 0, E 1, E 2, E 3. . . satisfying lψ(x)l 2 = density of probability to find the system in x • Restrict to the first two energy levels : E and 3 ħω ψ1(x) 2 1 ħω/2 ψ0(x) 0 x x

Postulate 1 : Quantum superposition • form an orthonormal basis of a 2 D-Hilbert

Postulate 1 : Quantum superposition • form an orthonormal basis of a 2 D-Hilbert space with • Quantum superposition : general state is given by - probability to find the system in state Qubit! …

Postulate 2 : Quantum Measurement • Quantum measurement : – – Consider the qubit

Postulate 2 : Quantum Measurement • Quantum measurement : – – Consider the qubit in state Ask the system : are you in or ? With probability the answer is The system is projected in state ! Measurement modifies the qubit state ! Quantum measurement can be DESTRUCTIVE !

Composite system and Quantum Entanglement • Composite system : Consider two qubits A and

Composite system and Quantum Entanglement • Composite system : Consider two qubits A and B – Qubit A lives in – Qubit B lives in – Joint system qubits A+B lives in A … • Entangled state : – Consider – First, we measure qubit A : we find qubit A in (with 50% probability ) – The joint state collapses to – qubit B is in with probability 1 ! B

Quantum « rules » : Summary 1) Quantum superposition : general qubit state 2)

Quantum « rules » : Summary 1) Quantum superposition : general qubit state 2) Measurement : revealing information about the state can destroy the superposition 3) Quantum Entanglement : possibility of having strongly correlated states between two qubits

Consequence : Decoherence Unwanted coupling with the environment : Qubit Environment -The environment measures

Consequence : Decoherence Unwanted coupling with the environment : Qubit Environment -The environment measures the qubit and this measurement destroys the quantum superposition ! -> lifetime of typically 100 us (for superconducting circuits) - Lifetime decreases with the number of qubits How can we fight decoherence ?

QUANTUM ERROR CORRECTION (QEC)

QUANTUM ERROR CORRECTION (QEC)

Bit vs. Qubit errors • Errors on classical bits : bit-flip errors 0 1

Bit vs. Qubit errors • Errors on classical bits : bit-flip errors 0 1 1 0 • Errors on qubits : Errors can be cast in two error channels : Bit-flip errors Phase-flip errors Rest of the talk

Quantum error correction • Classical error correction: information redundantly encoded Ex : 0 1

Quantum error correction • Classical error correction: information redundantly encoded Ex : 0 1 000 111 such that error on bit 1 : 100 error on bit 2 : 101 000 111

Quantum error correction • Quantum error correction (bit-flip errors only) three-qubit bit-flip code :

Quantum error correction • Quantum error correction (bit-flip errors only) three-qubit bit-flip code : g in d co en n tio c re r co But information about and must not be revealed. . . How do we detect errors without destroying the state ? = = Error on qubit 1 :

Quantum error correction • Error detection : Parity measurement qubit 1 flips P 12

Quantum error correction • Error detection : Parity measurement qubit 1 flips P 12 = 0 P 23 = 0 qu bit 2 Do not measure : it s lip 3 f Joint parities P 12 : = [Q 1+Q 2] mod 2 P 23 : = [Q 2+Q 3] mod 2 s P 12 = 1 P 23 = 0 b qu Single parities P 1, P 2, P 3 What we can measure : flip P 12 = 1 P 23 = 1 P 12 = 0 P 23 = 1 NON-destructive measurements !

Quantum error correction • Error Correction : simply apply inverse operation it 1 b

Quantum error correction • Error Correction : simply apply inverse operation it 1 b u pq fli P 12 = 1 P 23 = 0 flip qubit 2 P 12 = 0 P 23 = 0 flip qu bit 3 P 12 = 1 P 23 = 1 P 12 = 0 P 23 = 1

Quantum error correction : implementation 1 st option • Build a feedback loop –

Quantum error correction : implementation 1 st option • Build a feedback loop – real-time data analysis takes time – quantum systems are short-lived Superconducting circuits 100 us Courtesy of Quantum Electronics group, LPA, ENS (Paris)

Quantum error correction : feedback loop Error Correction ? Use a flipper ! qubits

Quantum error correction : feedback loop Error Correction ? Use a flipper ! qubits system Measurement output Error syndrome P 12 = 0, 1 P 23 = 0, 1 feedback

Quantum error correction : implementation 2 nd option : (what we have proposed) •

Quantum error correction : implementation 2 nd option : (what we have proposed) • Autonomous QEC by coupling the qubits with another strongly dissipative quantum system : Qubit designed coupling Dissipative system

Autonomous quantum error correction Main idea : Coherent stabilization of the manifold {l 000>,

Autonomous quantum error correction Main idea : Coherent stabilization of the manifold {l 000>, l 111>} through dissipation coupled system does not distinguish x +

In practice • Complete codes (correct for all types of errors) exist but have

In practice • Complete codes (correct for all types of errors) exist but have never been physically implemented • Qubits of many kinds : trapped ions, superconducting qubits, NV centers. . . • Quantum computer : 10 qubits max so far. Limited by decoherence ! -> QEC remains a challenge to overcome !

Thanks ! Questions ?

Thanks ! Questions ?