Automated Plasma Reconstruction at Large Helical Device LHD


















![マッピング結果を解析データとして登録 # [Parameters] # Name = TSMAP 計測名:tsmap (Te分布にベストフィット)または tsmap_pe(pe分布にベストフィット) # Shot. No = マッピング結果を解析データとして登録 # [Parameters] # Name = TSMAP 計測名:tsmap (Te分布にベストフィット)または tsmap_pe(pe分布にベストフィット) # Shot. No =](https://slidetodoc.com/presentation_image_h/95c73db0ce56f0a28b459339f93a1b4a/image-19.jpg)











- Slides: 30
Automated Plasma Reconstruction at Large Helical Device (LHD) M. Yokoyama (NIFS, National Institute for Fusion Science, Japan) Special thanks to: TASK 3 D Collaborators and LHD Experiment Group M. Yokoyama. ITER-ITM Jun. 2011 1/15
LHD, the world largest superconducting fusion device Parameters Achieved Ti 6. 5 ke. V (n~1. 6 x 1019 m-3) ~ 20 ke. V l 18 m-3) a (n~2 x 10 v Te ne in 3 m Long Pulse r e nt 1. 2 x 1021 m-3 i 5. 1% (B=0. 425 T) 54 min 28 s (500 k. W) 13 min 20 s (1 MW) M. Yokoyama. ITER-ITM Jun. 2011 2/15
Contents 1. Integrated transport code development: TASK 3 D ü extension incorporating “ 3 D effects” ü Module integration through “ruby” script (for the moment) 2. Plasma reconstruction ü diagnostics data: @real geometry @effective minor radius ü “line of sight” database M. Yokoyama. ITER-ITM Jun. 2011 3/15
Development of TASK 3 D, based on TASK BPSD TR Fixed-boundary equilibrium Diffusive transport TX Dynamic transport FP Kinetic transport TASK WR Ray and beam tracing WM Full wave analysis (ICH) DP Wave dispersion FIT 3 D NBI MORH NBI LHDGauss EI ER DGN/LHD Ray tracing (ECH) Heating in LHD TASK 3 D EQ Transport&MHD (3 D Physics) MSSH VMEC HINT 2 NEWBOZ M. Yokoyama. ITER-ITM Jun. 2011 3 D Equilibrium 4/15
Module (physics component) validation Transport analysis package for LHD experiment (module integration) Simplicity and flexibility to increase users (even experimentalists) ruby-based script, managing • module execution • file handling • multi-platform (Windows, Mac and linux) • readable object-oriented script language • change files and character string: easy (copy, delete, search, replacement etc. , ) Tips for ruby: http: //www. ruby-lang. org/en/ Web available in English, French, Japanese, Korean, Polish, Spanish, Portuguese, Simplified Chinese, Traditional Chinese, Bahasa Indonesia, German, Italian, Czech, Bulgarian and Turkish. M. Yokoyama. ITER-ITM Jun. 2011 5/15
Example ruby-script 1. 2. 3. 4. Module identification Magnetic configuration setting Plasma parameter setting (either by file or functional expression) Output file (t/f) 3 D equilibrium NBI deposition Transport coefficient M. Yokoyama. ITER-ITM Jun. 2011 1. Module identification &modules mod_name[1] = ‘vmec’ mod_name[2] = ‘fit 3 d‘ mod_name[3] = ‘trsnap‘ &end &comp_env (computation environment setting) local_work_dir = '. /work_dir-seki/' local_code_dir = '‘ comp_name[1] = 'task 4 lhd' comp_ip[1] = 'task 4 lhd 02. LHD. nifs. ac. jp' comp_user[1] = 'seki 3' comp_work_dir[1] = '/work 2/seki 3/W_W' comp_code_dir[1] = '/work/seki/TASK 4 LHD' &end 6/15
Example ruby-script 1. 2. 3. 4. Module identification Magnetic configuration setting Plasma parameter setting (either by file or functional expression) Output file (t/f) 3 D equilibrium NBI deposition Transport coefficient 2. Magnetic configuration setting &t 3 dparam B 0=2. 75, rmaj 0=3. 60, zi=1 &end &rbz_boun ns=61, lfreeb='F', flxfn='lhd-r 360 q 100 b 211 c 300 a 8040. flx', bqv=100. 0, gamv=1. 254, blv=0. 0, &end M. Yokoyama. ITER-ITM Jun. 2011 7/15
Example ruby-script 1. 2. 3. 4. Module identification Magnetic configuration setting Plasma parameter setting (either by file or functional expression) Output file (t/f) 3 D equilibrium 3. Plasma parameter setting NBI deposition &neprof ; ; nepfn='ne_2982_thomson_i 4_s 10@69177 t 2266. dat', nepfun='ne 0+ne 1*rho**2+ne 2*rho**4+ne 3*rho**6 +ne 4*rho**8', ne 0=1. 0, ne 1=0. 0, ne 2=0. 0, ne 3=0. 0, ne 4=-1. 0, ; ; Transport coefficient (10 e 19 m-3) &end &teprof ; ; tepfn='te_2982_thomson_i 4_s 10@69177 t 2266. dat', tepfun='te 0*(1. 0 -1. 0*rho**2)', te 0=5. 45 e 0, ; ; (ke. V) &end M. Yokoyama. ITER-ITM Jun. 2011 8/15
Plasma reconstruction at LHD Example of diagnostics 13 -channel FIR laser interferometer (ne) K. Tanaka et al. , Fusion Sci. Technol. 58 (2010) 70. Thomson scattering system (Te, ne) I. Yamada et al. , Fusion Sci. Technol. 58 (2010) 345 Plasma reconstruction requires geometrical information on 3 -dimensional equilibrium M. Yokoyama. ITER-ITM Jun. 2011 9/15
Plasma reconstruction at LHD • Extensive 3 D-equilibrium database • Te or Pe to be in-out symmetry with peak value “@effective radius=0” • Conversion routine from the real geometry (R, Z, ) to ü effective minor radius ü magnetic field strength ü rotational transform (1/q) etc. @ (R, Z, ) • Mapping Table for “real geometry to effective minor radius” at time-slice of diagnostics on each discharge • Diagnostics data (X) : X (real geometry) X (effective minor radius) • Analysis based on 3 D-equilibrium selected from the database M. Yokoyama. ITER-ITM Jun. 2011 10/15
Extensive equilibrium database 3 parameters on vacuum magnetic configuration • • • Magnetic axis position : 3. 50~4. 00 [m] Quadrupole field : -50, 0, 50, 100, 150, 200 [%] Coil pitch parameter 4 parameters on pressure and plasma current • • Central beta value : 0~10 [%] (11) Pressure-profile peaking factor (5) Plasma current : -150~150 [k. A/T] (13) Plasma-current peaking factor (11) 11 x 5 x 13 x 11=7865 3 D-equilibrium calculations to be performed for one particular configuration M. Yokoyama. ITER-ITM Jun. 2011 11/15
Increasing mapping capability FY 2010 NG: 1. 19 % FY 2009 NG: 3. 45 % FY 2008 NG: 6. 76 % M. Yokoyama. ITER-ITM Jun. 2011 12/15
“line of sight” database 3 D-equilibrium database “line-of-sight” database • • Not necessary to execute conversion program every time just call “line of sight” database prepared by equilibrium database Faster plasma reconstruction has become possible ex. , 155 s for 132 frame (time-slices) Core 2 Duo E 7200 @2. 53 GHz M. Yokoyama. ITER-ITM Jun. 2011 13/15
t=0. 466 s Te ne t=3. 52 s M. Yokoyama. ITER-ITM Jun. 2011 14/15
Summary 1. Integrated transport code development: TASK 3 D ü extension incorporating “ 3 D effects” ü Module integration through “ruby” script (for the moment) ü Outreach to 3 D effects in ITER or tokamaks 1. Plasma reconstruction ü Extensive 3 D-equilibrium database ü Diagnostics data : X(real geometry) X (effective minor radius) ü “line of sight” database ü Fast plasma reconstruction has been routinely possible 100, 000 shots @ 10 Nov. 2010 M. Yokoyama. ITER-ITM Jun. 2011 15/15
M. Yokoyama. ITER-ITM Jun. 2011 16/15
TASK 4 LHD user -make the input data for task 4 lhd in Windows (or Mac ) - start task 4 lhd (ruby program) (ex; ruby xxx. rb yyy. input) PC cluster (linux) or PS Ruby program make input files SSH(transport files) SSH(start module) SSH(check whether finish) get output files SSH(transport files) copy input file and sh for module. Start task 4 lhd(task 3 d) moudle (VMEC, FIT 3 D, ・ ・ ・) Finish Using the SSH_pagent, which entry private key for ssh, passward for ssh is not required. get output plot (make) graph (using the gnuplot ) 17/15 M. Yokoyama. ITER-ITM Jun. 2011
マッピング結果を解析データとして登録 # [Parameters] # Name = TSMAP 計測名:tsmap (Te分布にベストフィット)または tsmap_pe(pe分布にベストフィット) # Shot. No = 90000 # Date = '12/17/2010 11: 59' # # Dim. No = 2 # Dim. Name = 'Time', 'R' # Dim. Size = 267, 136 # Dim. Unit = 's', 'm' # # Val. No = 33 # Val. Name = 'Te', 'd. Te', 'n_e', 'dn_e', 'laser number', 'reff', 'a 99', 'p 0', 'pf', 'ipf', 'nl_thomson_mid', . . . # Val. Unit = 'ke. V', 'arb', 'm', '%', 'arb', 'k. A/T', 'arb', . . . # # [Comments] # Bt = -1. 4300000 # Rax = 3. 6000000 # Bq = 100. 000 # Gamma = 1. 2538000 磁場配位等の情報 # phiedge = -3. 28050 # avac = 0. 63900000 # Exp. Date = 20081127 # Cycle = 12 # density (ne) is only for very rough information # Do not use data for ne_bar < 5*1 -^12 cm-3 # High Voltage is set at 0. 90 times # Te limit = 22 ke. V # Laser#1, #3, #5, # # [data] 0. 000, 2. 532, 0. 016, 21. 780, 0, 1, 2365, 1, 10. 000, -0. 000, . . . 0. 000, 2. 572, 0. 090, 21. 780, 2, 1, 2365, 1, -0. 688, 0. 000, -0. 000, . . . 0. 000, 2. 611, 0. 000, 21. 780, 0, 1, 2365, 1, -0. 677, 0. 000, -0. 000, . . . 0. 000, 2. 648, 0. 008, 21. 780, 0, 1, 2365, 1, -0. 666, 0. 000, -0. 000, . . . 0. 000, 2. 683, 2. 646, 19. 357, 0, 0, 2365, 1, -0. 655, 0. 000, -0. 000, . . . Thomsonと同じ M. Yokoyama. ITER-ITM Jun. 2011 追加部分 19/15
Procedure: M. Yokoyama. ITER-ITM Jun. 2011 • Te(R) is projected onto Te( ) utilizing VMEC equilibrium database (in this case, by utilzing sequential data from “Rax=3. 75 m vacuum“ case: different P profiles, beta values) • symmetry of Te( ) w. r. t. =0 • Then, lhd-r 375 q 100 b 016 a 2020. flx is selected • Corresponding configuration files (VMEC input file, Boozer) are available 21/18 21/15
Example : Te-profile data === based on LHD equilibirum database Te( ) from M. Yokoyama. selected ITER-ITM Jun. 2011 VMEC euqilibrium database R -- transformation 22/15 22/18
圧力・電流分布 圧力分布 追加分 2 1 3 4 5 ρ M. Yokoyama. ITER-ITM Jun. 2011 23/15
マッピング実行例 Initial p 0=0. 00, pf=2. 14, ip=30. 2, ipf=2. 00, a 99=0. 561, avmec=0. 555, chi=281. 537 M. Yokoyama. ITER-ITM Jun. 2011 Best Fit p 0=5. 50, pf=2. 52, ip=30. 2, ipf=2. 00, a 99=0. 556, avmec=0. 551, chi=3. 372 26/15
高ベータ放電に対するマッピング実行 例 0. 1%刻みで スキャン p 0の粗い スキャン p 0の細かい スキャン Best Fit 初期値を 1回更新 実験値 使用 固定 #104000 f 201/290: 4. 000 s Rax= 3. 600 m Bq= 100% gamma=1. 197 avac= 0. 556 m denl=2560. 607 [a. u. ] nel_fir= 2. 776 nel_mmw= 1. 162 [10^19 m^-2] kk= 0 p 0= 0. 00 pf= 2. 21 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 561 avmec= 0. 555 chi= 281. 537 kk= 0 k= 1 p 0= 1. 00 pf= 2. 21 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 563 avmec= 0. 555 chi= 227. 343 kk= 0 k= 2 p 0= 2. 00 pf= 2. 21 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 562 avmec= 0. 554 chi= 160. 080 kk= 0 k= 3 p 0= 3. 00 pf= 2. 21 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 563 avmec= 0. 554 chi= 96. 478 kk= 0 k= 4 p 0= 4. 00 pf= 2. 21 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 562 avmec= 0. 553 chi= 41. 250 kk= 0 k= 5 p 0= 5. 00 pf= 2. 21 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 558 avmec= 0. 552 chi= 8. 351 kk= 0 k= 6 p 0= 6. 00 pf= 2. 21 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 554 avmec= 0. 552 chi= 10. 649 kk= 1 k= 0 p 0= 4. 40 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 561 avmec= 0. 552 chi= 25. 381 kk= 1 p 0= 4. 50 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 560 avmec= 0. 552 chi= 22. 146 kk= 1 k= 2 p 0= 4. 60 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 560 avmec= 0. 552 chi= 18. 782 kk= 1 k= 3 p 0= 4. 70 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 559 avmec= 0. 552 chi= 15. 990 kk= 1 k= 4 p 0= 4. 80 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 559 avmec= 0. 552 chi= 13. 004 kk= 1 k= 5 p 0= 4. 90 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 559 avmec= 0. 552 chi= 10. 761 kk= 1 k= 6 p 0= 5. 00 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 558 avmec= 0. 552 chi= 8. 840 kk= 1 k= 7 p 0= 5. 10 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 558 avmec= 0. 552 chi= 7. 251 kk= 1 k= 8 p 0= 5. 20 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 557 avmec= 0. 552 chi= 5. 961 kk= 1 k= 9 p 0= 5. 30 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 557 avmec= 0. 552 chi= 4. 627 kk= 1 k=10 p 0= 5. 40 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 557 avmec= 0. 552 chi= 3. 863 kk= 1 k=11 p 0= 5. 50 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 556 avmec= 0. 552 chi= 3. 157 kk= 1 k=12 p 0= 5. 60 pf= 2. 37 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 556 avmec= 0. 552 chi= 3. 261 kbest=11 p 0= 5. 50 pf= 2. 52 ip= 30. 2 ipf= 2. 00 sts= 0 err= 0 a 99= 0. 556 avmec= 0. 551 chi= 3. 372 Wpe= 21400. 0 geom_ 3. 732 Rax_v 3. 847 nl_thomson= 2203. 09 nl_thomson_R 3579= 868. 67 nl_thomson_R 3669= 865. 74 nl_thomson_R 3759= 866. 31 nl_thomson_R 3849= 787. 54 nl_thomson_R 3939= 899. 77 M. Yokoyama. ITER-ITM Jun. 2011 28/15