AULA N 4 12018 MEC NICA E SEUS

  • Slides: 30
Download presentation
AULA Nº 4 – 1°/2018 MEC NICA E SEUS CONCEITOS CURSO: Engenharia (Ciclo Básico)

AULA Nº 4 – 1°/2018 MEC NICA E SEUS CONCEITOS CURSO: Engenharia (Ciclo Básico) 1 DISCIPLINA: Tópicos de Física Geral e Experimental PROFº: MSc. Demetrius Leão

ACOMPANHE A DISCIPLINA PELA INTERNET • Página com as aulas e listas de exercícios:

ACOMPANHE A DISCIPLINA PELA INTERNET • Página com as aulas e listas de exercícios: Palavra-chave no Google: “A Física tá complicada? ” http: //simplephysicsbr. wordpress. com/ • E-mail: demetriusleao 0@gmail. com 2

A FÍSICA SE BASEIA EM MEDIÇÕES • Grandeza: Entidade suscetível de medida. • Para

A FÍSICA SE BASEIA EM MEDIÇÕES • Grandeza: Entidade suscetível de medida. • Para descrever uma grandeza Física, primeiro definimos uma unidade, isto é, uma medida da grandeza cujo valor é definido como exatamente 1, 0. • Em seguida, definimos um padrão, ou seja, uma referência com a qual devem ser comparados todos os outros exemplos da grandeza. 3

Porque padronizar? É importante evidenciar que a padronização dos sistemas de medidas ocorreu devido

Porque padronizar? É importante evidenciar que a padronização dos sistemas de medidas ocorreu devido a uma necessidade humana, com a intensificação das relações comerciais e sociais. Em 1872, o Brasil adotou o sistema métrico padrão, reconhecido e aceito em muitos países. 4

O SISTEMA INTERNACIONAL DE UNIDADES S. I. O Sistema Internacional de Unidades (sigla SI

O SISTEMA INTERNACIONAL DE UNIDADES S. I. O Sistema Internacional de Unidades (sigla SI do francês Système International d'unités) é a forma moderna do sistema métrico e é geralmente um sistema de unidades de medida concebido em torno de sete unidades básicas e da conveniência do número dez. É o sistema mais usado do mundo de medição, tanto no comércio quanto na Ciência. O SI ou SIU é um conjunto sistematizado e padronizado de definições para unidades de medida, utilizado em quase todo o mundo moderno, que visa a uniformizar e facilitar as medições e as relações internacionais daí decorrentes. 5

O SISTEMA INTERNACIONAL DE UNIDADES S. I. 6

O SISTEMA INTERNACIONAL DE UNIDADES S. I. 6

UNIDADES DE BASE DO SI Grandeza física Nome da unidade no SI Símbolo para

UNIDADES DE BASE DO SI Grandeza física Nome da unidade no SI Símbolo para a unidade no SI Comprimento metro m Massa quilograma kg Tempo segundo s Intensidade da corrente elétrica ampére A Temperatura termodinâmica kelvin K Quantidade de substância mol Intensidade luminosa candela cd 7

INMETRO O Instituto Nacional de Metrologia, Qualidade e Tecnologia - Inmetro - é uma

INMETRO O Instituto Nacional de Metrologia, Qualidade e Tecnologia - Inmetro - é uma autarquia federal, vinculada ao Ministério do Desenvolvimento, Indústria e Comércio Exterior, que atua como Secretaria Executiva do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial (Conmetro), colegiado interministerial, que é o órgão normativo do Sistema Nacional de Metrologia, Normalização e Qualidade Industrial (Sinmetro). Sua missão é prover confiança à sociedade brasileira nas medições e nos produtos, através da metrologia e da avaliação da conformidade, promovendo a harmonização das relações de consumo, a inovação e a competitividade do País. 8

GRANDEZA ESCALAR GRANDEZA DEFINIDA POR UM VALOR NUMÉRICO E UNIDADE DE MEDIDA. TEMPO MASSA

GRANDEZA ESCALAR GRANDEZA DEFINIDA POR UM VALOR NUMÉRICO E UNIDADE DE MEDIDA. TEMPO MASSA ENERGIA TEMPERATURA

GRANDEZA VETORIAL GRANDEZA DEFINIDA POR MÓDULO, DIREÇÃO E SENTIDO VELOCIDADE FORÇA ACELERAÇÃO

GRANDEZA VETORIAL GRANDEZA DEFINIDA POR MÓDULO, DIREÇÃO E SENTIDO VELOCIDADE FORÇA ACELERAÇÃO

Portanto: Grandezas Vetoriais são aquelas que para ficarem bem representadas necessitam de: Módulo, Direção

Portanto: Grandezas Vetoriais são aquelas que para ficarem bem representadas necessitam de: Módulo, Direção e Sentido. 11

Módulo: É representado graficamente através do tamanho do vetor ou através de um valor

Módulo: É representado graficamente através do tamanho do vetor ou através de um valor numérico acompanhado de unidade. Direção: É a reta que dá suporte ao vetor e pode ser informada através de palavras como: horizontal, vertical, etc. Sentido: É a orientação do vetor dada pela seta e também pode ser informada através de palavras como: para esquerda, para direita, do ponto A para o ponto B, para baixo, etc. 12

O QUE ESTUDA A MEC NICA É a parte da Física que estuda o

O QUE ESTUDA A MEC NICA É a parte da Física que estuda o movimento dos corpos. Ela é dividida em cinemática, dinâmica e estática. 13

CINEMÁTICA Descreve o movimento dos objetos sem se preocupar com suas causas, abrangendo os

CINEMÁTICA Descreve o movimento dos objetos sem se preocupar com suas causas, abrangendo os conteúdos de movimento retilíneo uniforme, movimento uniformemente variado, grandezas vetoriais nos movimentos e movimento circular. 14

DIN MICA É o estudo dos movimentos e suas causas. Tem como base de

DIN MICA É o estudo dos movimentos e suas causas. Tem como base de seus conteúdos as Leis de Newton 15

ESTÁTICA Estuda o equilíbrio de um sistema sob a ação de várias forças. 16

ESTÁTICA Estuda o equilíbrio de um sistema sob a ação de várias forças. 16

AS PRINCIPAIS GRANDEZAS DA MEC NICA TEMPO s DIST NCIA m MASSA kg VELOCIDADE

AS PRINCIPAIS GRANDEZAS DA MEC NICA TEMPO s DIST NCIA m MASSA kg VELOCIDADE m/s ACELERAÇÃO m/s² FORÇA N 17

O que é uma FORÇA? No sentido mais simples, é um empurrão ou puxão.

O que é uma FORÇA? No sentido mais simples, é um empurrão ou puxão. Num sentido macroscópico, podem ser forças de contato ou de ação a distância. Exemplos de forças de contato: Competidores de cabo de guerra Chute numa bola Colisão frontal de carros

Exemplos de forças de ação a distância: Força gravitacional Força elétrica Força magnética Newton

Exemplos de forças de ação a distância: Força gravitacional Força elétrica Força magnética Newton elaborou três leis do movimento, conhecidas como as três leis de Newton. Vamos falar sobre duas dessas leis: A primeira lei, a da Inércia, e a terceira lei, a lei da Ação e Reação.

I LEI DE NEWTON: A LEI DA INÉRCIA Def. : “Se nenhuma força atua

I LEI DE NEWTON: A LEI DA INÉRCIA Def. : “Se nenhuma força atua sobre um corpo, sua velocidade não pode mudar, ou seja, o corpo não pode sofrer uma aceleração. ” HALLIDAY, 2008. Em outras palavras, se um corpo está em repouso, permanecerá um repouso. Se está em movimento retilíneo uniforme, continua com a mesma velocidade (mesmo módulo e orientação). A inércia, portanto, é uma propriedade que os corpos possuem de resistir à mudança de seu estado de movimento. Para mudar a velocidade de um corpo, é preciso aplicar uma força sobre ele.

O princípio da inércia também explica porque as pessoas se ferem em acidentes automobilísticos.

O princípio da inércia também explica porque as pessoas se ferem em acidentes automobilísticos. O uso do cinto de segurança tenta minimizar o efeito da inércia, ao projetar alguém contra o para-brisas de um carro numa colisão, fixando as pessoas ao veículo.

22

22

III LEI DE NEWTON: AÇÃO E REAÇÃO Def. : A toda ação há, sempre

III LEI DE NEWTON: AÇÃO E REAÇÃO Def. : A toda ação há, sempre oposta, uma reação igual, ou as ações mútuas de dois corpos, um sobre o outro, são sempre iguais e dirigidas para partes contrárias.

F A-B F B-A Se um corpo A exerce sobre um corpo B uma

F A-B F B-A Se um corpo A exerce sobre um corpo B uma força FA-B , então o corpo B também exerce sobre o corpo A uma força FB-A , de modo que essas duas forças têm o mesmo módulo, a mesma direção e sentidos opostos. Logo, F A-B = F B-A

De acordo com Newton, as forças aparecem sempre aos pares; elas são interações entre

De acordo com Newton, as forças aparecem sempre aos pares; elas são interações entre corpos. Newton chamou esse par de forças de Ação e Reação.

II LEI DE NEWTON OU PRINCÍPIO FUNDAMENTAL DA DIN MICA Para que um corpo

II LEI DE NEWTON OU PRINCÍPIO FUNDAMENTAL DA DIN MICA Para que um corpo modifique o módulo, a direção ou o sentido de sua velocidade, o que significa estar em movimento acelerado, é necessária a ação de uma força. No caso de um corpo com massa constante, a aceleração a que ele é submetido será tanto maior quanto maior for a força resultante sobre ele. Ou seja: Força resultante: tem mesma direção e sentido da aceleração resultante. Se a força resultante sobre um corpo for nula, ele pode estar em movimento retilíneo uniforme, pois nesse movimento a aceleração resultante também é nula.

EXEMPLO 1 Um corpo com massa de 0, 6 kg foi empurrado por uma

EXEMPLO 1 Um corpo com massa de 0, 6 kg foi empurrado por uma força que lhe comunicou uma aceleração de 3 m/s 2. Qual o valor da força que nele atua? 27

EXEMPLO 2 Um corpo de massa 4, 0 kg encontra-se inicialmente em repouso e

EXEMPLO 2 Um corpo de massa 4, 0 kg encontra-se inicialmente em repouso e é submetido a ação de uma força cuja intensidade é igual a 60 N. Calcule o valor da aceleração adquirida pelo corpo. 28

EXEMPLO 3 Uma força horizontal de 200 N age em um corpo que adquire

EXEMPLO 3 Uma força horizontal de 200 N age em um corpo que adquire a aceleração de 2 m/s 2. Qual é a sua massa? 29

BONS ESTUDOS! 30

BONS ESTUDOS! 30