ATS round MDs MD 3270 r MPP MD

  • Slides: 7
Download presentation
ATS round MDs (MD 3270) r. MPP MD 2 preparation meeting S. Fartoukh, A.

ATS round MDs (MD 3270) r. MPP MD 2 preparation meeting S. Fartoukh, A. Mereghetti, M. Solfaroli on behalf of the OP, OMC, Collimation, LBDS Lumi, Beam-beam, Instability & ADT teams Acknowledgement: X. Buffat 04/09/2018 S. Fartoukh, r. MPP, 04/09/2018

Contents • MD set up • Discussion on intensity ramp-up strategy • Details on

Contents • MD set up • Discussion on intensity ramp-up strategy • Details on MD activities (inc. the validation shift) 04/09/2018 S. Fartoukh, r. MPP, 04/09/2018

MD setup The pre-squeeze (11 m 2 m) starts at 1 Te. V The

MD setup The pre-squeeze (11 m 2 m) starts at 1 Te. V The tele-squeeze (2 m 65 cm) starts at 2. 7 Te. V Tele-squeeze Tele-index of 3 End of Ramp Pre-squeeze Constant optics Combined Ramp and Double Squeeze (CRDS), immediately followed by Q-change and collision @ 65 cm 04/09/2018 Matched Point 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 S. Fartoukh, r. MPP, 04/09/2018 Time [s] 0 15 30 45 60 90 120 160 241 293 317 337 361 385 413 437 461 493 525 545 649 749 825 925 1025 1169 1210 Parabolic Fraction 0. 1 0. 05 0. 13 0. 10 0. 15 0. 13 0. 10 0. 11 0. 12 0. 15 0. 20 0. 15 0. 16 0. 20 0. 10 0. 05 Optics name R 2017 a_A 11 m. C 11 m. A 10 m. L 10 m R 2017 a_A 11 m. C 11 m. A 10 m. L 10 m R 2017 a_A 970 C 970 A 10 m. L 970 R 2017 a_A 920 C 920 A 10 m. L 920 R 2017 a_A 850 C 850 A 10 m. L 850 R 2017 a_A 740 C 740 A 10 m. L 740 R 2017 a_A 630 C 630 A 10 m. L 630 R 2017 a_A 530 C 530 A 10 m. L 530 R 2017 a_A 440 C 440 A 10 m. L 440 R 2017 a_A 360 C 360 A 10 m. L 360 R 2017 a_A 310 C 310 A 10 m. L 300 R 2017 a_A 230 C 230 A 10 m. L 300 R 2018 a_A 200 C 200 A 10 m. L 300 R 2018 a. T 200_A 182 C 182 A 10 m. L 300 R 2018 a. T 200_A 155 C 155 A 10 m. L 300 R 2018 a. T 200_A 122 C 122 A 10 m. L 300 R 2018 a. T 200_A 95 C 95 A 10 m. L 300 R 2018 a. T 200_A 77 C 77 A 10 m. L 300 R 2018 a. T 200_A 65 C 65 A 10 m. L 300 Tele. Index 1. 000 1. 000 1. 096 1. 290 1. 633 2. 105 2. 581 3. 077 b* [cm] at IP 1 &5 1100. 0 1100. 0 970. 0 920. 0 850. 0 740. 0 630. 0 530. 0 440. 0 360. 0 310. 0 230. 0 200. 0 182. 5 155. 0 122. 5 95. 0 77. 5 65. 0 Energy [Ge. V] 450 452 459 470 485 531 594 705 1013 1277 1416 1532 1671 1810 1972 2111 2250 2435 2620 2736 3339 3918 4358 4937 5516 6350 6500

Intensity ramp up strategy • Validation shift with setup beams (see details later) •

Intensity ramp up strategy • Validation shift with setup beams (see details later) • First step with 1+12+144 = 157 bunches • Intermediate step with 1+12+ 3 × 144 = 445 bunches • Last step with 1+12+ 6 × 144 = 877 bunches (all bunches except the first INDIV are colliding at IP 1/5, fully separated at IP 2 and with typical separation at IP 8) Replacing the 3 steps by 1/2/5 SPS injection could be acceptable w/o rending inconclusive the MD results (a min. of 700 “packed” bunches is needed for e-cloud) 1+12+2× 48= 109 bunches for the first step is possible, but the filling scheme will have to change as of the second step, making partially inconclusive the BBLR and instability studies made at the first step. 04/09/2018 S. Fartoukh, r. MPP, 04/09/2018

Detailed MD activities (1/2) Validation shift Activity (and comments) Time estimate [h] Single_7 b_1_1_1_5

Detailed MD activities (1/2) Validation shift Activity (and comments) Time estimate [h] Single_7 b_1_1_1_5 nc. Pilots 2 c. Nom (2 colliding nominal + 10 non-colliding probes) New TCT/TCL 4 functions (centres and Nsigma) and energy/b* interlock thresholds All maskable interlocks (inc. collimator) masked New MO ramp function with positive polarity - Setting up at injection, and injection 0. 5 h 3. 5 - Combined ramp & double squeeze 0. 25 h - Betatron Loss maps at flat top (optional) 0. 25 h - Q-change immediately followed by the Physics BP, Establish and optimize collision 0. 5 h - Betatron Loss maps in collision @ 120 mrad 0. 25 h - 120 90 mrad X-angle reduction and lumi optimization 0. 25 h - Betatron Loss maps in collision @ 90 mrad 0. 25 h - 90 120 mrad X-angle increase and lumi optimization 0. 25 h - Off-momentum Loss maps in collision (both dp)@ 120 mrad 0. 5 h - Scraping (<5 E 10), de-bunching, asynchronous dump (TCT @ 11 s) 0. 5 h Total 3. 5 04/09/2018 S. Fartoukh, r. MPP, 04/09/2018

Intensity ramp up Activity (and comments) 1 rst Fill: BBLR studies with trains -

Intensity ramp up Activity (and comments) 1 rst Fill: BBLR studies with trains - Setting up at injection and injection 0. 75 h - Combined ramp & double squeeze 0. 25 h - Q-change and Setting up at flat top 0. 5 h - Collision and lumi optimisation with trains 0. 5 h - MO polarity reversal, down to -570 A & Tune scan 0. 5 h - X-angle reduction down to 100 -90 mrad (if life time good enough) & Tune scan 0. 5 h - MO scan from -570 A to +200 A (2/3 cycles in one go for each step) 0. 75 h - MO @ -570 A , X-angle back to 120 mrad and lumi levelling test 0. 25 h - Offset levelling test (fast and slow Vernier scan) and beam activity observation 1. 0 h Dump & Ramp down 2 d Fill: Intensity ramp up with 450 bunches - Setting up at injection and injection 0. 75 h - Combined ramp & double squeeze 0. 25 h - Q-change, Setting up at flat top, and heat-load/beam activity observation 0. 5 h - Collision and lumi optimisation with trains 0. 25 h - MO polarity reversal down to -570 A and X-angle reduction down to 100 -90 mrad (if life time good enough) 0. 25 h - Lumi optimization and heat-load/beam activity observation 1. 0 h Dump & Ramp down 3 rd Fill: Intensity ramp up with 900 bunches - Setting up at injection with probes and injection 0. 75 h - Combined ramp & double squeeze 0. 25 h - Q-change, Setting up at flat top, and heat-load/beam activity observation 0. 5 h - Collision and lumi optimisation with trains 0. 25 h - MO polarity reversal down to -570 A and X-angle reduction down to 100 -90 mrad (if life time good enough) 0. 25 h - Lumi optimization and heat-load/beam activity observation (optional: Vernier scan towards the end) 2. 0 h - Beam dump 04/09/2018 S. Fartoukh, r. MPP, 04/09/2018 Total Time estimate [h] 5. 0 1. 0 3. 0 1. 0 4. 0 14. 0

Summary & outlook • Identifying and demonstrating an operational scenario with the CRDS (and

Summary & outlook • Identifying and demonstrating an operational scenario with the CRDS (and [email protected] 200 A Eo. R) is vital to boost the LHC performance in Run III • Ideally, however, one would like to demonstrate the CRDS with negative MO polarity all along, which is more “risky” (instability-wise) in the Physics beam process, but on the other will avoid MO polarity reversal for colliding beams, (MO<0 is needed for life time but only at lower b*/X-angle ) ** If the offset levelling test is probing, as foreseen at MO=-570 A at the end of the first step, the MO polarity will be reversed to negative (Ramp # 3 available in the trim history) as of the second step of the intensity ramp up. ** If counter-indication from r. MPP, one will NOT do this. 04/09/2018 S. Fartoukh, r. MPP, 04/09/2018