Atomic wt 6 023 x 1023 wt 1








































































- Slides: 72





기본개념 원자량(Atomic wt) = 6. 023 x 1023 분자나 원자들의 wt 1 amu/atom = 1 g/mol 예) 철의 원자량= 55. 85 amu/atom=5. 85 g/mol, C 12. 011 H 1. 008 etc. 5




Atomic Structure • Valence electrons determine all of the following properties 1) 2) 3) 4) Chemical Electrical Thermal Optical 9


11



14

15



예제 • 파장 λ 가 121. 6 nm인 광자의 에너지를 J과 e. V로 구하라. (1. 0 e. V=1. 60 x 10 -19 J, h=6. 63 x 10 -34 J-s, 1 nm=10 -9 m) • 풀이: ΔE=hc/ λ이므로 ΔE=(6. 63 x 10 -34 J-s)(3. 0 x 108 m/s)/(121. 6 nmx 109 m/nm) =1. 63 x 10 -18 Jx 1 e. V/1. 60 x 10 -19 J=10. 2 e. V 18













31


33

34

35


37





42













Electronic Structure • Electrons have wavelike and particulate properties. – This means that electrons are in orbitals defined by a probability. – Each orbital at discrete energy level is determined by quantum numbers. Quantum # Designation n = principal (energy level-shell) l = subsidiary (orbitals) ml = magnetic K, L, M, N, O (1, 2, 3, etc. ) s, p, d, f (0, 1, 2, 3, …, n -1) 1, 3, 5, 7 (-l to +l) ms = spin ½, -½ 55

Electron Energy States Electrons. . . • have discrete energy states • tend to occupy lowest available energy state. 4 d 4 p N-shell n = 4 3 d 4 s Energy 3 p 3 s M-shell n = 3 Adapted from Fig. 2. 4, Callister & Rethwisch 3 e. 2 p 2 s L-shell n = 2 1 s K-shell n = 1 56

SURVEY OF ELEMENTS • Most elements: Electron configuration not stable. Element Atomic # Electron configuration Hydrogen 1 1 s 1 Helium 2 1 s 2 (stable) Lithium 3 1 s 2 2 s 1 Beryllium 4 1 s 2 2 s 2 Adapted from Table 2. 2, Boron 5 1 s 2 2 p 1 Callister & Rethwisch 3 e. Carbon 6 1 s 2 2 p 2. . . Neon 10 1 s 2 2 p 6 (stable) 1 s 2 2 p 6 3 s 1 Sodium 11 Magnesium 12 1 s 2 2 p 6 3 s 2 Aluminum 13 1 s 2 2 p 6 3 s 2 3 p 1. . . Argon 18 1 s 2 2 p 6 3 s 2 3 p 6 (stable). . Krypton 36 1 s 2 2 p 6 3 s 2 3 p 6 3 d 10 4 s 2 4 p 6 (stable) • Why? Valence (outer) shell usually not filled completely. 57

Electron Configurations • Valence electrons – those in unfilled shells • Filled shells more stable • Valence electrons are most available for bonding and tend to control the chemical properties – example: C (atomic number = 6) 1 s 2 2 s 2 2 p 2 valence electrons 58

Electronic Configurations ex: Fe - atomic # = 26 1 s 2 2 s 2 2 p 6 3 s 2 3 p 6 3 d 6 4 s 2 4 d 4 p N-shell n = 4 valence electrons 3 d 4 s Energy 3 p 3 s M-shell n = 3 Adapted from Fig. 2. 4, Callister & Rethwisch 3 e. 2 p 2 s L-shell n = 2 1 s K-shell n = 1 59

The Periodic Table give up 1 egive up 2 egive up 3 e- accept 2 eaccept 1 einert gases • Columns: Similar Valence Structure K Ca Sc Se Br Kr H He Li Be O F Ne Na Mg S Cl Ar Rb Sr Y Cs Ba Te I Adapted from Fig. 2. 6, Callister & Rethwisch 3 e. Xe Po At Rn Fr Ra Electropositive elements: Readily give up electrons to become + ions. Electronegative elements: Readily acquire electrons to become - ions. 60

Electronegativity • Ranges from 0. 7 to 4. 0, • Large values: tendency to acquire electrons. Smaller electronegativity Larger electronegativity Adapted from Fig. 2. 7, Callister & Rethwisch 3 e. (Fig. 2. 7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3 rd edition, Copyright 1939 and 1940, 3 rd edition. Copyright 1960 by Cornell University. 61

Ionic bond – metal + nonmetal donates accepts electrons Dissimilar electronegativities ex: Mg. O Mg 1 s 2 2 p 6 3 s 2 O 1 s 2 2 p 4 [Ne] 3 s 2 Mg 2+ 1 s 2 2 p 6 [Ne] O 2 - 1 s 2 2 p 6 [Ne] 62

Ionic Bonding • Occurs between + and - ions. • Requires electron transfer. • Large difference in electronegativity required. • Example: Na. Cl Na (metal) unstable Cl (nonmetal) unstable electron Na (cation) stable + Coulombic Attraction - Cl (anion) stable 63

Ionic Bonding • Energy – minimum energy most stable – Energy balance of attractive and repulsive terms EN = EA + ER = - A r - B rn Repulsive energy ER Interatomic separation r Net energy EN Adapted from Fig. 2. 8(b), Callister & Rethwisch 3 e. Attractive energy EA 64

Examples: Ionic Bonding • Predominant bonding in Ceramics Na. Cl Mg. O Ca. F 2 Cs. Cl Give up electrons Acquire electrons Adapted from Fig. 2. 7, Callister & Rethwisch 3 e. (Fig. 2. 7 is adapted from Linus Pauling, The Nature of the Chemical Bond, 3 rd edition, Copyright 1939 and 1940, 3 rd edition. Copyright 1960 by Cornell University. 65

Covalent Bonding • similar electronegativity share electrons • bonds determined by valence – s & p orbitals dominate bonding • Example: CH 4 C: has 4 valence e-, needs 4 more CH 4 H: has 1 valence e-, needs 1 more H Electronegativities are comparable. H C H shared electrons from carbon atom H shared electrons from hydrogen atoms Adapted from Fig. 2. 10, Callister & Rethwisch 3 e. 66

Primary Bonding • Metallic Bond -- delocalized as electron cloud • Ionic-Covalent Mixed Bonding % ionic character = x (100%) where XA & XB are Pauling electronegativities Ex: Mg. O XMg = 1. 3 XO = 3. 5 67

SECONDARY BONDING Arises from interaction between dipoles • Fluctuating dipoles asymmetric electron clouds + - secondary bonding + - ex: liquid H 2 H 2 H H secondary bonding Adapted from Fig. 2. 13, Callister & Rethwisch 3 e. • Permanent dipoles-molecule induced -general case: -ex: liquid HCl -ex: polymer + - H Cl secon dary b secondary bonding + secondary bonding H Cl ondin g - Adapted from Fig. 2. 14, Callister & Rethwisch 3 e. secondary bonding 68

Summary: Bonding Comments Type Bond Energy Ionic Large! Nondirectional (ceramics) Covalent Variable large-Diamond small-Bismuth Directional (semiconductors, ceramics polymer chains) Metallic Variable large-Tungsten small-Mercury Nondirectional (metals) Secondary smallest Directional inter-chain (polymer) inter-molecular 69

Properties From Bonding: Tm • Bond length, r • Melting Temperature, Tm Energy r • Bond energy, Eo ro Energy r smaller Tm unstretched length r o r Eo = “bond energy” larger Tm Tm is larger if Eo is larger. 70

Properties From Bonding : a • Coefficient of thermal expansion, a length, L o coeff. thermal expansion unheated, T 1 DL heated, T 2 DL = a (T 2 -T 1) Lo • a ~ symmetric at ro Energy unstretched length ro Eo Eo r smaller a a is larger if Eo is smaller. larger a 71

Summary: Primary Bonds Ceramics Large bond energy (Ionic & covalent bonding): Metals large Tm large E small a Variable bond energy (Metallic bonding): moderate Tm moderate E moderate a Polymers Directional Properties (Covalent & Secondary): Secondary bonding dominates small Tm small E large a secon dary b o nding 72
6 023 x 1023
Formula de los moles
What is 80 023 written in scientific notation
Sait 023 024
American airlines flight 1023
Tmk1023
Moles is equal to
Jumlah mol dari 3,01 * 10 ^ 22 atom besi adalah
6 02 x 1023
6 02 x 1023
Ion size trend
Atomic number vs atomic radius
Periodic trends
Abundance calculation chemistry
Relative formula mass of hcl
Difference between atomic mass and atomic number
Atomos atomic model
History of atomic models
The atoms family atomic math challenge answer key
Difference between atomic bomb and hydrogen bomb
Moles to atoms formula
Couchbase javascript
Meoms
Number of protons in hydrogen
Hans geiger atomic theory
Semiconductor atomic structure
Atomic data center
Erwin schrödinger model of atom
When did leucippus discover the atomic theory
Summarize dalton's atomic theory
Atomos atomic model
Atomic emission spectra and the quantum mechanical model
Atomic size increases down the group
Introduction to atomic spectra
Average atomic mass of chlorine
Find the number of protons h
Carbon atom drawing
Atomic model (1808)
Oxygen periodic trends
Atomic number au
Atomic mass of chlorine
Piezoelectric crystal atomic structure
Atomic absorption spectroscopy history
Atomic size increases down the group
The isotope atoms differ in *
Molar mass periodic table
Jj thomson atomic theory
Atomic theory vocabulary
How to write atomic number and mass number
Atomic number 15
What is mercurys atomic mass
Nonbonding atomic solid examples
Chromium orbital configuration
Where are the noble gases on the periodic table
Effective nuclear charge explained
Atomic size pattern
Cesium fountain atomic clock
Atomic theory timeline
Komponen aas
Discovery of atomic structure
Types of interference in atomic absorption spectroscopy
460 democritus atom model
Democtritus
Atomic nuclei
Average atomic mass formula
Al atomic mass
Z atomic symbol
Electronegativity trends
13 al 27
Chapter 4 atomic structure vocabulary
Niels bohr conclusion
A physical change occurs when a peach spoils
Atomic mass of copper in amu