Astrophysical Accelerators of Ultra High Energy Cosmic Rays

  • Slides: 31
Download presentation
Astrophysical Accelerators of Ultra High Energy Cosmic Rays Susumu Inoue (NAOJ) → Kyoto U.

Astrophysical Accelerators of Ultra High Energy Cosmic Rays Susumu Inoue (NAOJ) → Kyoto U. GRBs AGNs clusters collaborators: AGNs: H. Takami, T. Yamamoto, K. Sato GRBs: K. Asano, P. Meszaros clusters: G. Sigl, F. Miniati, E. Armengaud F. Aharonian, N. Sugiyama, K. Murase, S. Nagata +others

outline 1. introduction with recent Auger results 2. AGNs: radio galaxies vs Auger and

outline 1. introduction with recent Auger results 2. AGNs: radio galaxies vs Auger and implications 3. GRBs: synchrotron g-rays from UHE nuclei 4. clusters: heavy nuclei as UHECRs UHE proton-induced X & g-rays contribution to sub-ankle CRs & neutrinos multi-messenger, multi-wavelength approach UHECR gamma-ray neutrino

cosmic vs terrestrial accelerators EUHECR~ 3 x 1020 e. V ~50 J ~kinetic E

cosmic vs terrestrial accelerators EUHECR~ 3 x 1020 e. V ~50 J ~kinetic E of 100 km/h fastball 160 km/h tennis serve ELHC~ 7 Te. V ~< kin. E of housefly (20 mg, 7 km/h) EKEKPS~ 12 Ge. V ~ kin. E of mosquito (3 mg, 5 cm/s)

Auger anisotropy Science 318, 938 (2007) also ar. Xiv: 0712. 2843 - 20/27 events

Auger anisotropy Science 318, 938 (2007) also ar. Xiv: 0712. 2843 - 20/27 events >56 Ee. V correlated within <3. 1 deg with AGNs <75 Mpc (z<0. 018) in Veron-Cetty AGN catalog - 2 events in direction of Cen A (nearest AGN) 0 events from Virgo region

Auger anisotropy: implications 1. not isotropic! 2. sources are extragalactic, tracing large-scale structure on

Auger anisotropy: implications 1. not isotropic! 2. sources are extragalactic, tracing large-scale structure on 100 Mpc (GZK horizon) scale -> Galactic ruled out 3. deflections in Galactic/extragalactic magnetic fields not severe at highest E -> birth of charged particle astronomy! but otherwise sources still unknown e. g. heavy-dominant composition disfavored? depends on source+Galactic MF+extragalactic MF warning - still small statistics (~3 sigma)! - Veron-Cetty “catalog” highly nonuniform

Auger composition mixed composition at all E becoming heavier at highest E? ? Watson

Auger composition mixed composition at all E becoming heavier at highest E? ? Watson ar. Xiv: 0801. 2321 consistency with anisotropy?

UHECR sources: acceleration from “Hillas plot” adapted Yoshida & Dai 98 E ≦ Ze

UHECR sources: acceleration from “Hillas plot” adapted Yoshida & Dai 98 E ≦ Ze B R (v/c) confinement B GRBs B~∝R-1 AGN jets clusters R Emax acceleration vs: escape source lifetime adiab. expansion loss radiative loss luminosity limit B 2/8 p=e. BL/4 p. R 2 G 2 bc -> L > (2 c. G 2/be. Be 2)(E/Z)2 =1045. 5 erg/s (G 2/be. B)(E/Zx 1020 e. V)2 Waxman 03

shock acceleration - power-law spectrum d. N/d. E~∝E-2 for strong shock - very efficient

shock acceleration - power-law spectrum d. N/d. E~∝E-2 for strong shock - very efficient typically ~10% of kinetic energy upstream downstream shock front consistent with observations - in-situ: interplanetary shocks, … - SNRs, radio galaxy hot spots, … c. f. other acceleration mechanisms magnetic reconnection unipolar induction …

UHECR sources: energy budget kinetic E input into the universe Inoue astro-ph/0701835 AGNs (radio

UHECR sources: energy budget kinetic E input into the universe Inoue astro-ph/0701835 AGNs (radio galaxies) Willott+ 01 z-dep. LF Lkin-Lrad correlation Rawlings 92 supernovae, GRBs ∝ star formation rate ESN=1051 erg Porciani & Madau 01 EGRB=1053 erg, indep. of beaming cluster accretion Press Schechter mass function Lacc(M)~0. 9 x 1046 (M/1015 MQ)5/3 erg/s Keshet+ 04 differential (per unit z) d. Ekin/dz=(dt/dz)∫d. L L dn/d. L UHECR budget @1019 e. V u. CR ~3 x 10 -19 erg cm-3 ~1054 erg Mpc-3

active galactic nuclei (AGNs) supermassive black hole +accretion disk (flow) radio-loud (relativistic jet) radioquiet

active galactic nuclei (AGNs) supermassive black hole +accretion disk (flow) radio-loud (relativistic jet) radioquiet (no jet) ~90% Seyfert galaxy radio-quiet quasar FR 2 radio galaxy highpower ~<1% low~9% power FR 1 radio galaxy Te. V blazar (BL Lac) Ge. V blazar

AGNs: acceleration sites radio-quiet+radio-loud AGN near-nucleus R~1013 -1014 cm B~104 G? Emax~Epg~<1018 e. V

AGNs: acceleration sites radio-quiet+radio-loud AGN near-nucleus R~1013 -1014 cm B~104 G? Emax~Epg~<1018 e. V e. g. Szabo & Protheroe 94 inconsistent with observed ke. V-Me. V highest E not expected from Chandra webpage

AGNs: acceleration sites low+high power (FR 1+2) radio galaxy near-nucleus highest E not expected

AGNs: acceleration sites low+high power (FR 1+2) radio galaxy near-nucleus highest E not expected inner jet (blazar) R~1016 -1017 cm B~0. 1 -1 G Emax~Epg~<1020 e. V e. g. Mannheim 93 adiabatic loss -> n conversion escape? shear-layer acceleration? accel. /escape nontrivial from Chandra webpage

AGNs: acceleration sites high power (FR 2) radio galaxy near-nucleus highest E not expected

AGNs: acceleration sites high power (FR 2) radio galaxy near-nucleus highest E not expected inner jet (blazar) Emax~Epg~<1020 e. V accel. /escape nontrivial hot spot R~1021 cm B~1 m. G Emax~Eesc~1020 -21 e. V e. g. Rachen & Biermann 93 from Chandra webpage accel. /escape easiest but still nontrivial escape through cocoon +contact disc. ?

radio galaxies vs Auger Takami, SI, Yamamoto & Sato, in prep. high power (FR

radio galaxies vs Auger Takami, SI, Yamamoto & Sato, in prep. high power (FR 2) objects Massaglia 07 1. 4 GHz radio galaxies (D<75 Mpc): black Auger: blue AGASA: green (>40 Ee. V) red (>20 Ee. V) no obvious correlations with high+low power (FR 2+1) objects bright FR 2 or 1 radio galaxies! Wall & Peacock 85 Cen A statistical fluke? 2. 7 GHz

radio galaxies as UHECR sources may still be viable if: 1. radio activity timescale

radio galaxies as UHECR sources may still be viable if: 1. radio activity timescale ~106 -108 yr < time delay during intergalactic propagation tdelay, uni(E, D)~107 yr (E 20/Z)-2 D 100 Mpc 2 lc, Mpc. B 10 n. G 2 2. acceleration in FR 2 hot spots + escape after cessation of activity 3. acceleration in FR 1 jets + escape during jet deceleration some combination of the above?

time delay in structured EGMF - real local large scale structure - <B> ∝

time delay in structured EGMF - real local large scale structure - <B> ∝ r 2/3, norm. at cluster -> Takami’s talk D<5 Mpc 50<D<75 Mpc BVirgo=0. 1 m. G E>1019. 8 e. V=63 Ee. V time delay (log yr) Takami, SI, Yamamoto & Sato, in prep. 5<D<50 Mpc 75<D<100 Mpc

GRBs: acceleration sites Waxman 95 Vietri 95 adapted from Meszaros 01 prompt X-g emission

GRBs: acceleration sites Waxman 95 Vietri 95 adapted from Meszaros 01 prompt X-g emission internal shocks R~G 2 ctvar~1012 -1016 cm B~106 -103 G Grel~1 optical flash, radio flare radio-IR-opt-X afterglow external reverse shock external forward shock R~Rdec~1016 cm B~10 G Grel~1 escape nontrivial R~Rdec-RNR~1016 -1018 cm B~10 -0. 01 G? >>BISM Grel>>1 accel. nontrivial

synchrotron gamma-rays from UHE protons Vietri 97 Ep~1020 e. V -> nsyn~Ge. V-Te. V

synchrotron gamma-rays from UHE protons Vietri 97 Ep~1020 e. V -> nsyn~Ge. V-Te. V Asano, SI & Meszaros, in prep. acceleration/survival of UHE nuclei in GRBs Wang+ ar. Xiv: 0711. 2065 Murase+ ar. Xiv: 0801. 2861 synchrotron from UHE nuclei photon energy nsyn∝ E 2 Z/A 3 power Psyn∝ E 2 Z 4/A 4 loss time tsyn ∝ E-1 A 4/Z 4 Inoue, in prep.

Inoue, in prep. nuclear synchrotron spectra abundance at low E=Galactic CR source at fixed

Inoue, in prep. nuclear synchrotron spectra abundance at low E=Galactic CR source at fixed E/A H=1, He=0. 07, C=3 x 10 -3, O=3. 7 x 10 -3, Si= 7 x 10 -4, Fe=7 x 10 -4 (note: metals may be enhanced in GRBs!) normalize to proton synchrotron expansion limited case tacc(∝Z)=tdyn EZ∝Z, n. Z∝Z 3/A 3, t. Z∝A 4/Z 5 p nfn EZ/Ep t. Z/tp He Fe x 100 C, O x 10 n. Z/np C, O n proton dominant, but tsyn can be shorter! Z

nuclear synchrotron spectra tacc(∝Z)=tsyn(∝A 4/Z 4) synchrotron limited case EZ∝A/Z 1. 5, n. Z∝A/Z

nuclear synchrotron spectra tacc(∝Z)=tsyn(∝A 4/Z 4) synchrotron limited case EZ∝A/Z 1. 5, n. Z∝A/Z 2, t. Z∝A 2/Z 2. 5 p He nfn t. Z/tp Fe x 100 C, O x 10 C, O n EZ/Ep n. Z/np Z

nuclear synchrotron spectra photodisintegration limited case tacc(∝Z)=tdis(∝~A 1. 2) EZ ∝Z/A 1. 2, n.

nuclear synchrotron spectra photodisintegration limited case tacc(∝Z)=tdis(∝~A 1. 2) EZ ∝Z/A 1. 2, n. Z ∝Z 3/A 5. 4, t. Z ∝A 5. 2/Z 5 p depends on low E spec. t. Z/tp EZ/Ep nfn n. Z/np He n Z

nuclear synchrotron: implications He observable -> crucial for interpretation of UHECR ankle C, O,

nuclear synchrotron: implications He observable -> crucial for interpretation of UHECR ankle C, O, Si, Fe… may be observable if H+He depleted (expected in GRB progenitors? ) unique probe of UHE nuclei acceleration! He/p<0. 05 required pair dip Gal. -extragal. transition Allard+ 07

cluster accretion shocks Ryu+ 03 accretion (minor merger) strong shocks accretion power. Lacc(M)=fgas. GMM/Rs

cluster accretion shocks Ryu+ 03 accretion (minor merger) strong shocks accretion power. Lacc(M)=fgas. GMM/Rs ~1046 erg/s (M/1015 MQ)5/3 protons v~2000 km/s, Bs~1 m. G -> Ep, max~ 1018 -1019 e. V HOWEVER Fe nuclei (Z=26) EFe, max>~1020 e. V Mach no. Kang+ 97

nuclei from cluster accretion shocks as UHECRs SI, Sigl, Miniati & Armengaud, PRD (astro-ph/0701167)

nuclei from cluster accretion shocks as UHECRs SI, Sigl, Miniati & Armengaud, PRD (astro-ph/0701167) Emax acceleration vs CMB losses, lifetime Hubble shock radius, velocity, etc. Rs~3. 2 Mpc Vs~2200 km/s Bs~ 1 m. G (Bs, eq~ 6 m. G) Bohm limit shock accel. time tacc=(20/3) rgc/Vs 2 escape limit tesc~R 2/5 k(E) Emax/Z~7 x 1018 e. V heavy nuclei Emax for Bs~1 m. G EFe, max~1020 e. V

nuclei from clusters as UHECRs spectrum consistent with some heavy enhancement composition confirmed by

nuclei from clusters as UHECRs spectrum consistent with some heavy enhancement composition confirmed by Xmax? anisotropy consistent depending on GMF+EMGF? with EGMF f. CR~0. 005 -0. 3 no EGMF f. CR~0. 002 anisotropy composition 100 events>4 x 1019 e. V 1000 events>4 x 1019 e. V heavier at higher E 1019 e. V 1020 e. V confirmed by Xmax? escape: diffusion away from filaments advection during merger disruption

heavy distortion by Galactic MF solution to Virgo “hole”? Virgo? assume <Z>~10 Centaurus Hydra

heavy distortion by Galactic MF solution to Virgo “hole”? Virgo? assume <Z>~10 Centaurus Hydra A 3627 Perseus Takami & Sato 07 proton deflection angle

UHE proton-induced hard X+g emission from clusters p(1018 e. V) +g. CMB→ p+ e+e-

UHE proton-induced hard X+g emission from clusters p(1018 e. V) +g. CMB→ p+ e+e- (1015 e. V) e+e-+B(~m. G)→ke. V, e+e-+g. CMB→Te. V SI, Aharonian, Sugiyama 05 Coma D=100 Mpc Suzaku Ne. XT, Nu. STAR, SIMBOL-X HESS, MAGIC, CANG. 3, VERITAS…

sub-ankle energy CRs from clusters? Murase, SI & Nagataki to be submitted probe through

sub-ankle energy CRs from clusters? Murase, SI & Nagataki to be submitted probe through VHE neutrinos

summary Auger results extragalactic origin, but no unambiguous ID with sources AGNs (radio galaxies)

summary Auger results extragalactic origin, but no unambiguous ID with sources AGNs (radio galaxies) little positional correlation with Auger events may still be viable depending on time delay and/or escape properties? GRBs probe of UHE nuclei acceleration through synchrotron Ge. V-Te. V cluster accretion shocks heavy nuclei scenario: may be consistent with spectra, composition anisotropy too? probe through UHE proton-induced hard X-rays + Te. V gamma-rays contribution to sub-ankle energies: probe through neutrinos other sources? starburst galaxies, merging galaxies, dormant black holes, extragalactic magnetars … none of the above? UHECR sources still unknown!

history of GRBs 180 bursts before 1991 Galactic NS! after 1991 NS-NS merger ->

history of GRBs 180 bursts before 1991 Galactic NS! after 1991 NS-NS merger -> collapsar Woosley 93

history of UHECRs? 30 events >60 Ee. V TA 2007 AGNs? 1000 events >60

history of UHECRs? 30 events >60 Ee. V TA 2007 AGNs? 1000 events >60 Ee. V EUSO, Auger. N+S… ? ? ? after 201 x ? ? ? Inoue 201 x? ? ?