Astroparticle neutrino experiments KM 3 Ne T Ice

  • Slides: 26
Download presentation
Astro-particle neutrino experiments KM 3 Ne. T, Ice. Cube, GVD (Baikal) ECFA – 22

Astro-particle neutrino experiments KM 3 Ne. T, Ice. Cube, GVD (Baikal) ECFA – 22 nd of February 2021 Maarten de Jong 1

Disclaimer: • Numbers are indicative and should be taken with a pinch of salt;

Disclaimer: • Numbers are indicative and should be taken with a pinch of salt; • Visions are meant for discussion and may be biased; 2

? neu t rino s 3

? neu t rino s 3

The case for Te. V Pe. V neutrino astronomy scattering angle 9 8 7

The case for Te. V Pe. V neutrino astronomy scattering angle 9 8 7 6 5 4 3 2 1 10 -33 10 -34 10 -35 10 -36 102 103 104 105 En [Ge. V] 106 107 101 median angle 102 103 En [Ge. V] 104 background 10 -3 E 2 F [Ge. V cm-2 s-1 sr-1] cross section 105 10 -7 10 -9 10 -11 10 -13 102 nm (Honda) ne (Honda) “prompt” (Enberg) 103 104 105 106 108 107 En [Ge. V] 4

The case for Te. V Pe. V neutrino astronomy scattering angle 9 8 7

The case for Te. V Pe. V neutrino astronomy scattering angle 9 8 7 6 5 4 3 2 1 10 -33 10 -34 10 -35 10 -36 102 103 104 105 En [Ge. V] 106 107 101 median angle 102 103 En [Ge. V] 104 background 10 -3 E 2 F [Ge. V cm-2 s-1 sr-1] cross section 105 10 -7 10 -9 10 -11 10 -13 102 nm (Honda) ne (Honda) “prompt” (Enberg) 103 104 105 106 108 107 En [Ge. V] 5

Neutrino propagation weak states = “what you see” mass states = “what you get”

Neutrino propagation weak states = “what you see” mass states = “what you get” CP-violation Test of fundamental physics Majorana 6

Neutrino telescope Cherenkov (1934): H 2 O as detector 1. target mass overcome small

Neutrino telescope Cherenkov (1934): H 2 O as detector 1. target mass overcome small x-section Markov (1960): H 2 O as target 2. muon range good angular resolution 3. transparency sparse detector 7

Neutrino detection muon neutrino 1 2 3 4 5 electron neutrino q ~100 m

Neutrino detection muon neutrino 1 2 3 4 5 electron neutrino q ~100 m light absorption cos(q) ~ [km] ln(E/Te. V) ~ [m] ln(E/Te. V) muon energy loss radiation length 8

Neutrino detector chromatic dispersion 1 km intensity 2 3 km 1 km light absorption

Neutrino detector chromatic dispersion 1 km intensity 2 3 km 1 km light absorption light scattering 3 D array of photo-sensors arrival time [ns] 9

M = 1012 kg T = 10– 20 years QE = 25% 1 km

M = 1012 kg T = 10– 20 years QE = 25% 1 km SA = 250– 1, 000 m 2 labs = 50– 100 m 1 km 20– 100 km GPS 1– 100 Gb/s 10

M = 1012 kg labs = 50– 100 m Artic ice deep sea 11

M = 1012 kg labs = 50– 100 m Artic ice deep sea 11

Global Neutrino Network ANTARES deep water 0. 02 km 3 2007 – KM 3

Global Neutrino Network ANTARES deep water 0. 02 km 3 2007 – KM 3 Ne. T deep water 1++ km 3 construction Ice. Cube deep ice 1 km 3 2011 – 12

Neutrino telescopes Ice. Cube GVD Antares KM 3 Ne. T Status completed 2011 under

Neutrino telescopes Ice. Cube GVD Antares KM 3 Ne. T Status completed 2011 under construction completed 2007 under construction Location South Pole Lake Baikal Mediterranean Sea Medium ice lake sea 0. 4 deg 10 deg 0. 5 deg 2 deg extremely low medium 10” (25%) 10” (35%) Light transmission Resolution nm ne Noise PMT size (QE) 0. 4 deg 2 deg 0. 05 deg 1. 5 deg medium 10” (20%) 3” (30%) 13

 • • • timing QE collection efficiency photon counting purity price/cm 2 ETEL

• • • timing QE collection efficiency photon counting purity price/cm 2 ETEL D 792 ≤ 2. 5 ns ≥ 25– 30% ≥ 90% 100% (by hits, up to 7) ≤ 10” PMT Hamamatsu R 12199 more pixels = better physics HZC XP 53 B 20 ETEL 14

Front-end electronics Ice. Cube KM 3 Ne. T custom low-power HV, TDC and ADC

Front-end electronics Ice. Cube KM 3 Ne. T custom low-power HV, TDC and ADC 15

Housing commercial floatation devices 16

Housing commercial floatation devices 16

Cabling Ice. Cube KM 3 Ne. T commercial 17

Cabling Ice. Cube KM 3 Ne. T commercial 17

Civil engineering (1/3) Ice. Cube: • hole drilling in ice (custom) • shore station

Civil engineering (1/3) Ice. Cube: • hole drilling in ice (custom) • shore station (custom) 18

Civil engineering (2/3) GVD (Baikal): • deployment from ice surface (custom) • shore station

Civil engineering (2/3) GVD (Baikal): • deployment from ice surface (custom) • shore station (commercial) 19

Civil engineering (3/3) KM 3 Ne. T: • deployment with surface vessel (commercial) •

Civil engineering (3/3) KM 3 Ne. T: • deployment with surface vessel (commercial) • shore station (commercial) 20

Clock – DAQ – Computing Ice. Cube clock custom data transfer wire Tier-0 custom

Clock – DAQ – Computing Ice. Cube clock custom data transfer wire Tier-0 custom Tier-1+2 ? GVD, Baikal custom + White-Rabbit wire custom CPU (450) KM 3 Ne. T White-Rabbit fibre CPU (100) CPU (500) APPEC roadmap (to be published) “Computing resources are relatively modest …” “Filtering of the rare neutrino signal from the high background … poses challenges” “… machine learning and use of GPUs can improve the science output” 21

Present • Era of multi-messenger astronomy – EM-radiation – cosmic rays – neutrinos –

Present • Era of multi-messenger astronomy – EM-radiation – cosmic rays – neutrinos – gravitational waves – alerts (from astronomy) – point telescopes world-wide to astrophysical event in real time • Fundamental particle physics with atmospheric and cosmic neutrinos – neutrino mass ordering – nt appearance – sterile neutrinos, Lorentz invariance, non-standard interactions, … 22

Future (1/2) • Benefit from serendipities Earth and sea sciences climate change marine life

Future (1/2) • Benefit from serendipities Earth and sea sciences climate change marine life (e. g. noise pollution) tsunami warnings • Explore alternative technologies for Ee. V neutrino detection radio detection (e. g. GRAND, RNO) acoustics neutrino detection (e. g. KM 3 Ne. T) 23

Future (2/2) • 24

Future (2/2) • 24

Summary & Outlook • Technology for 1012 kg neutrino detectors now is affordable •

Summary & Outlook • Technology for 1012 kg neutrino detectors now is affordable • standardise – maximise – capitalise • price photo-sensors important (high QE – low dark count) • costs civil engineering significant but much less than excavation • Global Neutrino Network (GNN) • [European] astro-particle neutrino experiments could benefit from interaction with particle physics centres, in particular CERN • know-how, reviews, collaboration • Lone baseline neutrino and/or cosmic-ray experiments • use & push technology to limit 25

26

26