Assembly Language for x 86 Processors 7 th
Assembly Language for x 86 Processors 7 th Edition Kip Irvine Chapter 1: Basic Concepts Slides prepared by the author Revised by Zuoliu Ding at Fullerton College, 07/2014 (c) Pearson Education, 2015. All rights reserved. You may modify and copy this slide show for your personal use, or for use in the classroom, as long as this copyright statement, the author's name, and the title are not changed.
Chapter Overview • • Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 2
Welcome to Assembly Language • Some Good Questions to Ask • Assembly Language Applications Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 3
Questions to Ask • • Why am I learning Assembly Language: What background should I have? What is an assembler? What hardware/software do I need? What types of programs will I create? What do I get with this book? What will I learn? • • • IA-32 architecture, memory modes, Boolean logic Create AL apps, debug, trace, data representations Interface AL to C++, How C++ code works Windows apps in protected mode Hardware, OS system call, and interrupts Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 4
Welcome to Assembly Language (cont) • How does assembly language (AL) relate to machine language? • How do C++ and Java relate to AL? • Is AL portable? • Why learn AL? • • • Device drive and embedded programming Simulation/Monitoring Game and real-time apps Understanding Hardware, OS, and Apps Mixed language programming Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 5
What is Assembler? xyz. c / xyz. cpp Compiler (cl. exe) xyz. obj Linker (link. exe) xyz. exe xyz. asm Assembler (ml. exe) xyz. obj Linker (link. exe) xyz. exe Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. Added by Zuoliu Ding 6
Assembly Language Applications • Some representative types of applications: • • Business application for single platform Hardware device driver Business application for multiple platforms Embedded systems & computer games (see next panel) Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 7
Comparing ASM to High-Level Languages Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 8
What's Next • • Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 9
Virtual Machine Concept • Virtual Machines • Specific Machine Levels Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 10
Virtual Machine Example: JVM • JVM, the main component of Java architecture and the part of JRE. Provides the cross platform functionality to java. • A software process that converts the compiled Java byte code to machine code. • Byte code is an intermediary language between Java source and the host system. http: //en. wikipedia. org/wiki/Java_virtual_machine Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 11
Virtual Machine Example: . NET CLR • • Common Language Runtime (CLR) is the virtual machine of Microsoft's . NET framework, responsible for managing the execution of. NET programs. A process known as just-in-time (JIT) compilation, the CLR compiles the intermediate language code (CIL) into the machine instructions executed by the computer's CPU. http: //en. wikipedia. org/wiki/. NET_Framework Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 12
Virtual Machines • Tanenbaum: Virtual machine concept • Programming Language analogy: • Each computer has a native machine language (language L 0) that runs directly on its hardware • A more human-friendly language is usually constructed above machine language, called Language L 1 • Programs written in L 1 can run two different ways: • Interpretation – L 0 program interprets and executes L 1 instructions one by one • Translation – L 1 program is completely translated into an L 0 program, which then runs on the computer hardware Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 13
Translating Languages English: Display the sum of A times B plus C. C++: cout << (A * B + C); one to many Assembly Language: Intel Machine Language: mov eax, A mul B add eax, C call Write. Int A 1 0000 F 7 25 00000004 03 05 00000008 E 8 00500000 one to one Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 14
Specific Machine Levels (descriptions of individual levels follow. . . ) Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 15
High-Level Language • Level 4 • Application-oriented languages • C++, Java, Pascal, Visual Basic. . . • Programs compile into assembly language (Level 4) Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 16
Assembly Language • Level 3 • Instruction mnemonics that have a one-toone correspondence to machine language • Programs are translated into Instruction Set Architecture Level - machine language (Level 2) Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 17
Instruction Set Architecture (ISA) • Level 2 • Also known as conventional machine language • Executed by Level 1 (Digital Logic) Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 18
Digital Logic • • • Level 1 CPU, constructed from digital logic gates System bus Memory Implemented using bipolar transistors next: Data Representation Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 19
What's Next • • Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 20
Data Representation • Binary Numbers • Translating between binary and decimal • Binary Addition • Integer Storage Sizes • Hexadecimal Integers • Translating between decimal and hexadecimal • Hexadecimal subtraction • Signed Integers • Binary subtraction • Character Storage Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 21
Binary Numbers • Digits are 1 and 0 • 1 = true • 0 = false • MSB – most significant bit • LSB – least significant bit • Bit numbering: • Reference: • Binary numeral system at Wikipedia Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 22
Binary Numbers • Each digit (bit) is either 1 or 0 • Each bit represents a power of 2: Every binary number is a sum of powers of 2 Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 23
Translating Binary to Decimal Weighted positional notation shows how to calculate the decimal value of each binary bit: dec = (Dn-1 2 n-1) + (Dn-2 2 n-2) +. . . + (D 1 21) + (D 0 20) D = binary digit, 0 or 1 binary 00001001 = decimal 9: (1 23) + (1 20) = 9 • How to implement with multiplication complexity of O(n)? Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. w =1; dec =0; Loop, i: 0 ~ n-1 { Dec += Di * w w *=2 } 24
Translating Binary to Decimal • Horner's rule: http: //en. wikipedia. org/wiki/Horner’s_rule dec = ((…( (Dn-1 2) + Dn-2) 2) +. . . + D 1) 2 + D 0 10001001 b = 128 +8 +1 = 137 d dec = ((…( (D 7 2) + D 6) 2) +. . . + D 1) 2 + D 0 = ((…( (1 2) + 0) 2) +. . . + 0) 2 + 1 • Good for code implementation • Example: 10010101101 b 1197 d • http: //en. wikipedia. org/wiki/Binary-todecimal_conversion#Conversion_to_and_from_other_numeral _systems Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 25
Translating Unsigned Decimal to Binary • Repeatedly divide the decimal integer by 2. Each remainder is a binary digit in the translated value: 37 = 100101 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 26
Binary Addition • Starting with the LSB, add each pair of digits, include the carry if present. How about 5 + 7? Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 27
Integer Storage Sizes Standard sizes: What is the largest unsigned integer that may be stored in 20 bits? Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 1048475 28
Hexadecimal Integers Binary values are represented in hexadecimal. Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 29
Translating Binary to Hexadecimal • Each hexadecimal digit corresponds to 4 binary bits. • Example: Translate the binary integer 101101010011110010100 to hexadecimal: Try to separate: 0001, 0110, 1010, 0111, 1001, 0100 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 30
Converting Hexadecimal to Decimal • Multiply each digit by its corresponding power of 16: dec = (D 3 163) + (D 2 162) + (D 1 161) + (D 0 160) • Hex 1234 equals (1 163) + (2 162) + (3 161) + (4 160), or decimal 4, 660. • Hex 3 BA 4 equals (3 163) + (11 162) + (10 161) + (4 160), or decimal 15, 268. • Horner's rule: (((3 16) + 11) 16) + 10 ) 16) + 4 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 31
Powers of 16 Used when calculating hexadecimal values up to 8 digits long: Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 32
Converting Decimal to Hexadecimal 422 = 1 A 6 hexadecimal Verify the value of 1 A 6 by Horner's rule? Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 33
Hexadecimal Addition • Divide the sum of two digits by the number base (16). The quotient becomes the carry value, and the remainder is the sum digit. 36 42 78 28 45 6 D 1 28 58 80 1 6 A 4 B B 5 21 / 16 = 1, rem 5 Important skill: Programmers frequently add and subtract the addresses of variables and instructions. Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 34
Hexadecimal Subtraction • When a borrow is required from the digit to the left, add 16 (decimal) to the current digit's value: 16 + 5 = 21 -1 C 6 A 2 24 75 47 2 E Practice: The address of var 1 is 00400020. The address of the next variable after var 1 is 0040006 A. How many bytes are used by var 1? Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 35
Signed Integers The highest bit indicates the sign. 1 = negative, 0 = positive What’s this? -10 +10 If the highest digit of a hexadecimal integer is > 7, the value is negative. Eg. For byte 8 A, C 5, word A 29 D, dword B 1234567 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 36
Forming the Two's Complement • Negative numbers are stored in two's complement notation • Represents the additive Inverse • Note that 00000001 + 1111 = 0000 • Two's Complement operation is reversible. Two's Complement of 1111 is 00000001 Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 37
Binary Subtraction • When subtracting A – B, convert B to its two's complement • Add A to (–B) 0 0 1 1 0 0 – 0 0 0 1 1 0 0 1 0 0 1 1 0 0 + 1 1 1 0 1 0 0 1 Practice: Subtract 0101 from 1001. Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 38
Learn How To Do the Following: • Form 2's complement of a hexadecimal WORD: (-27197 d) • 6 A 3 Dh 95 C 2 h+1 95 C 3 h • Convert signed byte to decimal • 11110000 b -16 d What if unsigned? • Convert signed decimal to binary, byte • -43 d: (43 d 00101011 b, 11010100 b+1) 11010101 b • Convert signed decimal to hexadecimal byte • -43 d D 5 h • Convert signed hexadecimal byte to decimal • D 5 h: (2 Ah+1 = 2 Bh) -43 d Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 39
Ranges of Signed Integers The highest bit is reserved for the sign. This limits the range: 10000000 - Why? 01111111 Practice: What is the largest positive value that may be stored in 20 bits? Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 40
Character Storage • Character sets • • Standard ASCII (0 – 127) Extended ASCII (0 – 255) ANSI (0 – 255) Unicode (0 – 65, 535) • Null-terminated String • Array of characters followed by a null byte • Using the ASCII table • Back inside cover of book • Control characters, Front inside cover of book • http: //en. wikipedia. org/wiki/ASCII Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 41
Numeric Data Representation • Pure binary: binary integer • can be calculated directly, 01000001 b, 41 h, 65, 101 o • ASCII binary • string of digits: "01000001" • ASCII decimal • string of digits: "65" • ASCII hexadecimal • string of digits: “ 41“ • ASCII octal • string of digits: “ 101" next: Boolean Operations Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 42
What's Next • • Welcome to Assembly Language Virtual Machine Concept Data Representation Boolean Operations Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 43
Boolean Operations • • • NOT AND OR Operator Precedence Truth Tables Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 44
Boolean Algebra • Based on symbolic logic, designed by George Boole • http: //en. wikipedia. org/wiki/George_Boole • Boolean expressions created from: • NOT, AND, OR Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. 45
NOT • Inverts (reverses) a boolean value • Truth table for Boolean NOT operator: Digital gate diagram for NOT: Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 46
AND • Truth table for Boolean AND operator: Digital gate diagram for AND: Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 47
OR • Truth table for Boolean OR operator: Digital gate diagram for OR: Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 48
Operator Precedence • Examples showing the order of operations: Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 49
Truth Tables (1 of 3) • A Boolean function has one or more Boolean inputs, and returns a single Boolean output. • A truth table shows all the inputs and outputs of a Boolean function Example: X Y Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 50
Truth Tables (2 of 3) • Example: X Y Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 51
Truth Tables (3 of 3) • Example: (Y S) (X S) Two-input multiplexer http: //en. wikipedia. org/wiki/Multiplexer Irvine, Kip R. Assembly Language for Intel-Based Computers 6/e, 2010. Added by Zuoliu Ding 52
Summary • Assembly language helps you learn how software is constructed at the lowest levels • Assembly language has a one-to-one relationship with machine language • Each layer in a computer's architecture is an abstraction of a machine • layers can be hardware or software • Boolean expressions are essential to the design of computer hardware and software Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 53
54 68 65 20 45 6 E 64 What do these numbers represent? Irvine, Kip R. Assembly Language for Intel-Based Computers 7/e, 2015. 54
- Slides: 54