Anisotropic Spin Fluctuations and Superconductivity in 115 Heavy

  • Slides: 33
Download presentation
Anisotropic Spin Fluctuations and Superconductivity in ‘ 115’ Heavy Fermion Compounds : 59 Co

Anisotropic Spin Fluctuations and Superconductivity in ‘ 115’ Heavy Fermion Compounds : 59 Co NMR Study in Pu. Co. Ga 5 S. -H. Baek et. al. PRL 105, 217002(2010) Kazuhiro Nishimoto Kitaoka lab. 1

Contents • Introduction - History of superconductivity - Heavy fermion system - Transuranic HF

Contents • Introduction - History of superconductivity - Heavy fermion system - Transuranic HF compounds - Motivation • Measurement - NMR (Nuclear Magnetic Resonance) • Experimental Results (Pu. Co. Ga 5) • Summary 2

introduction History of Superconductivity Transition temperature (K) 200 metal heavy fermion system high-Tc cuprate

introduction History of Superconductivity Transition temperature (K) 200 metal heavy fermion system high-Tc cuprate 163 iron-based system 150 1911 Hg-Ba-Ca-Cu-O (under high pressure) Discovery of superconducting phenomenon Hg-Ba-Ca-Cu-O Tl-Ba-Ca-Cu-O Bi-Sr-Ca-Cu-O 100 Y-Ba-Cu-O 77 1979 Heavy fermion superconductor 1986 50 Mg. B 2 Hg Pb Nb Nb. C La-Ba-Cu-O Pu. Co. Ga 5 Nb. Ge Nb. N Ce. Cu 2 Si 2 Sm. O 0. 9 F 0. 11 Fe. As La. O 0. 89 F 0. 11 Fe. As La. OFe. P 0 1900 1920 1940 1960 1980 2000 2020 Year High-Tc cuprate superconductor 2006 Iron-based high-Tc superconductor 3

introduction Heavy Fermion System What does “Heavy” mean? Heavy Fermion system Normal metal +

introduction Heavy Fermion System What does “Heavy” mean? Heavy Fermion system Normal metal + + + f + f f + + c-f hybridization ( c-f 混成) Strong electron correlation makes effective mass large. “Heavy” Heavy ⇒ large effective mass 4

introduction Heavy Fermion System Example of heavy fermion superconductor compounds Ce. Cu 2 Si

introduction Heavy Fermion System Example of heavy fermion superconductor compounds Ce. Cu 2 Si 2 Ce. Pd 2 Si 2 Ce. Rh 2 Si 2 Ce. In 3 Ce. Rh. In 5 Pr. Os 4 Sb 12 lanthanide compounds ⇒some 4 f electrons UPt 3 UPd 2 Al 3 Pu. Co. Ga 5 actinide compounds ⇒some 5 f electrons All of HF compounds have f-electrons. 5

Transuranic HF Compounds introduction transuranium elements (超ウラン元素) • don’t exist in nature • Handling

Transuranic HF Compounds introduction transuranium elements (超ウラン元素) • don’t exist in nature • Handling is difficult because of strong radioactivity example : Pu. Co. Ga 5 , Pu. Rh. Ga 5 , Np. Pd 5 Al 2 6

introduction Motivation iso-structural superconductor Pu. Co. Ga 5 : Pu-115 compounds 5 f-electron :

introduction Motivation iso-structural superconductor Pu. Co. Ga 5 : Pu-115 compounds 5 f-electron : 5個 Tc = 18. 5 K Ce. Co. In 5 : Ce-115 compounds 4 f-electron : 1個 Tc = 2. 3 K Amazingly high Tc in HF 115 compounds NMR study (Pu. Co. Ga 5 in normal state) • Spectra • K (Knight shift) • 1/T 1 T 7

Introduction measurement NMR spectra I =1/2 m=-1/2 gℏ H 0 m=+1/2 Zeeman splitting NMR

Introduction measurement NMR spectra I =1/2 m=-1/2 gℏ H 0 m=+1/2 Zeeman splitting NMR Intensity ω 8

measurement NMR Intensity Knight shift H electron 9

measurement NMR Intensity Knight shift H electron 9

measurement T 1~spin-lattice relation time Release the energy Excitation energy I=-1/2 I=+1/2 spin-lattice interaction

measurement T 1~spin-lattice relation time Release the energy Excitation energy I=-1/2 I=+1/2 spin-lattice interaction nuclear spin electronic spin Energytransfer 1/T 1 is quite sensitive to spin fluctuations 10

59 Co result NMR Spectra at 19 K Co : I =7/2    g

59 Co result NMR Spectra at 19 K Co : I =7/2    g = 10. 103 MHz/T Spectra • Quadrupole Interaction : I >1 (電気四重極相互作用) • νQ = 1. 02 MHZ νQ 11

result Knight shifts and 1/T 1 ~T 3 • Knight shifts show strongly anisotropic

result Knight shifts and 1/T 1 ~T 3 • Knight shifts show strongly anisotropic behavior. • At Tc both sifts drop sharply , indicating spin-singlet pairing. Spin singlet S=0 • 1/T 1⇒d-wave superconductor anisotropic : 異方性 12

result 1/T 1 T in 115 compounds 5 f-electrons Pu. Co. Ga 5 Lu.

result 1/T 1 T in 115 compounds 5 f-electrons Pu. Co. Ga 5 Lu. Co. Ga 5 5個 0個 • Lu. Co. Ga 5 1/T 1 T = const conduction electrons ⇒ metallic • Pu. Co. Ga 5 conduction electrons + 5 f-electrons ⇒heavy fermion state Spin fluctuations develop as temperature decrease. Anisotropy (T 1 T)∥-1 / (T 1 T)⊥-1 reaches a maximum just above Tc. 13

result Korringa ratio RK > 1 ⇒ antiferromagnetic RK ~ 1 ⇒Fermi gas RK

result Korringa ratio RK > 1 ⇒ antiferromagnetic RK ~ 1 ⇒Fermi gas RK < 1 ⇒ ferromagnetic From K(T) and 1/T 1 T , Rk ranges from 5 to 16 Strong AFM fluctuations in Pu. Co. Ga 5 14

result Anisotropic nature Pu. Co. Ga 5 : tetragonal structure (a=b≠c) new spin-lattice relaxation

result Anisotropic nature Pu. Co. Ga 5 : tetragonal structure (a=b≠c) new spin-lattice relaxation rate (1/T 1 T )H∥c = 2 Ra • in-plane component : Ra • out-of-plane component : Rc (1/T 1 T )H⊥c = Ra+Rc AFM spin fluctuation is strong In XY-plane. 15

result Ratio of spin fluctuation energy : ρ Spin fluctuation energy : χ″(q=Q, ω)

result Ratio of spin fluctuation energy : ρ Spin fluctuation energy : χ″(q=Q, ω) Γ Magnetic order ratio : ω 115 HF compounds ρ > 1 ⇒ XY-like anisotropy Cuprates : YBa 2 Cu 3 O 7 ρ ⋍ 1 ⇒ isotropic        16

Tc versus Γa/Γc for 115 HF superconductors result • Reduced dimensionality could enhance Tc.

Tc versus Γa/Γc for 115 HF superconductors result • Reduced dimensionality could enhance Tc. • Anisotropy Γc/Γa is a good parameter for determining Tc. 17

Summary Pu. Co. Ga 5 : 59 Co. NMR study in the normal state

Summary Pu. Co. Ga 5 : 59 Co. NMR study in the normal state • Spin fluctuations promote d-wave superconductivity in the iso-structural 115 HF compounds. • Both the Knight shift K and the spin-lattice relaxation rate 1/T 1 are strongly anisotropic. • The ratio Γc/Γa (spin fluctuation energy) is a characteristic quantity in 115 HF compounds. This suggest the possibility that anisotropic spin-fluctuations enhance Tc. 18

a: 71 Ga NMR spectra in 8 T b : The normal-state magnetic shift

a: 71 Ga NMR spectra in 8 T b : The normal-state magnetic shift K tot of the 59 Co and 71 Ga(1) versus bulk susceptibility x. c : The total magnetic shift K tot of the 59 Co and 71 Ga(1) versus temperature.

Normalized spin susceptibility in the superconducting state. 71 Ga 59 Co

Normalized spin susceptibility in the superconducting state. 71 Ga 59 Co

(T 1 T )-1/(T 1 T )-10 versus T/Tc (T 1 T )-10 is

(T 1 T )-1/(T 1 T )-10 versus T/Tc (T 1 T )-10 is given by the value of (T 1 T )-1 at 1. 25 Tc

Tc versus the characteristic spin fluctuation energy T 0 = Γq. B 2/2π

Tc versus the characteristic spin fluctuation energy T 0 = Γq. B 2/2π

c/a ratio of tetragonal structure parameter versus Tc

c/a ratio of tetragonal structure parameter versus Tc

Temperature - pressure phase diagram

Temperature - pressure phase diagram

Crystal structure in 115 compounds

Crystal structure in 115 compounds

What can we know from Knight shift ? of Cooper pair~ Cooper   ~Symmetry pairing state

What can we know from Knight shift ? of Cooper pair~ Cooper   ~Symmetry pairing state ψ(r 1 -r 2; s 1, s 2) = Φ(r 1 -r 2) σ (s 1, s 2) orbital part spin part even function (s, d wave) spin-singlet Φ (-(r 1 -r 2)) =Φ (r 1 -r 2) s (s 2, s 1) = -s (s 1, s 2) S=0 s-wave odd function (p wave) Φ (-(r 1 -r 2)) = -Φ (r 1 -r 2) spin-triplet s (s 2, s 1) = s(s 1, s 2) S=1 d-wave p-wave

1/T 1 in various superconductors Conventional type (BCS) unconventional superconductors (non BCS) NS(E) N

1/T 1 in various superconductors Conventional type (BCS) unconventional superconductors (non BCS) NS(E) N 0 Line nodes s-wave EF EF +Δ 0 d-wave p-wave Point nodes EF EF +Δ 0