Angles in quadrants II quadrant Terminal arm 90

  • Slides: 12
Download presentation
Angles in quadrants II quadrant Terminal arm 90 0 to 180 0 Terminal arm

Angles in quadrants II quadrant Terminal arm 90 0 to 180 0 Terminal arm 0 0 to 90 0 O(0, 0) 180 0 to 270 III quadrant Terminal arm 0 2700 To 360 0 IV quadrant Terminal arm

Angles in quadrants II quadrant -360 0 to -270 0 III quadrant m r

Angles in quadrants II quadrant -360 0 to -270 0 III quadrant m r P a l a n i m r 0 to 90 0 e 0 t O(0, 0) Initial arm A IV quadrant AOP is in I quadrant AOP lies between 0 0 to 90 0 or -360 0 to -270 0

Angles in quadrants II quadrant P ter m ina la 90 0 to 180

Angles in quadrants II quadrant P ter m ina la 90 0 to 180 0 rm -270 0 to -180 0 III quadrant O(0, 0) Initial arm A IV quadrant AOP is in II quadrant AOP lies between 0 0 to 180 0 or -270 0 to -180 0

Angles in quadrants II quadrant 0 0 to 270 0 m r a O(0,

Angles in quadrants II quadrant 0 0 to 270 0 m r a O(0, 0) Initial arm l a n i m r e t P III quadrant AOP is in III quadrant A IV quadrant -180 0 to -90 0 AOP lies between 0 0 to 180 0 or -180 0 to -90 0

Draw the Fig. and write the Answers i) For the angle in Standard position

Draw the Fig. and write the Answers i) For the angle in Standard position if the initial arm rotates 220 0 in clockwise directions then state the quadrant in which terminal arm lies. ter 0 II quadrant -270 m P ina la rm -180 0 III quadrant O(0, 0) Initial arm -220 0 AOP is in II quadrant AOP lies between -270 0 to -180 0 A IV quadrant

If terminal arm is in II quadrant , what are the possible angle ?

If terminal arm is in II quadrant , what are the possible angle ? II quadrant te 0 P -270 ina la rm rm -180 0 O(0, 0) III quadrant 90 0 to 180 0 Initial arm A IV quadrant AOP is in II quadrant AOP lies between 90 0 to 180 0 OR -270 0 to -180 0

TRIGONOMETRIC RATIOS IN TERMS OF CO-ORDINATES OF POINTS P(x, y) B r y θ

TRIGONOMETRIC RATIOS IN TERMS OF CO-ORDINATES OF POINTS P(x, y) B r y θ O(0, 0) x A OP= r, OA= X, AP=Y sinθ = y cos θ = r tanθ = cosecθ = cotθ= x y , y 0 Sec θ = r x y x r y r x , X 0 , y 0 , X 0

Sings of Trigonometric ratios in different quadtants I quadrant II quadrant (- , +

Sings of Trigonometric ratios in different quadtants I quadrant II quadrant (- , + ) (+ , +) Sine positive All are positive O(0, 0) III quadrant IV quadrant (- , - ) (+ , - ) tangent positive cosine positive

4. 2. 1 Find the trigonometric ratios in standard position whoes terminal arm passes

4. 2. 1 Find the trigonometric ratios in standard position whoes terminal arm passes through the points X=4, y=3 r = x 2+ y 2 r = 4 2+ 3 2 r = 16 + 9 r = 25 (i) ( 4, 3) (ii) ( 5 , - 12 ) y sinθ = cos θ = tanθ = cosecθ = r = 5 cotθ= x y =3/4 Sec θ = r x r y r x =3/5 =4/5 =3/4 =5/3

Trigonometric Ratios of negative angles sin(-θ )= - sinθ cosec(-θ )= - cosecθ cos

Trigonometric Ratios of negative angles sin(-θ )= - sinθ cosec(-θ )= - cosecθ cos (-θ )= cosθ sec (-θ )= secθ tan (-θ )= - tanθ cot(-θ )= - cotθ

4. 1. 2. If the angle θ = - 60 0 , find the

4. 1. 2. If the angle θ = - 60 0 , find the values of sinθ, cosθ, secθ and tanθ. sin(-θ )= - sinθ sec (-θ )= secθ sin(-60 ) = - sin 60 sec(-60 )= sec 60 = - 3/2 cos (-θ )= cosθ cos (-60 )= cos 60 = 1/2 =2 tan (-θ )= - tanθ tan (-60 )= - tan 60 = - 3

4. 2. 3 Find whether the angle lies if the terminal arm passes In

4. 2. 3 Find whether the angle lies if the terminal arm passes In Which quadrant pt. (-8, 1) lies? through the following points i)(5, -7) ii)(-8, 1) iii)(-3, -3) iv)(0, 2) In Which quadrant (-8 , 1 ) II quadrant pt. (5, -7) lies? (0 , 2 ) O(0, 0) (-3 , -3 ) IV quadrant (5 , -7 )